Blog
/
Network
/
August 3, 2022

The Risks of Remote Access Tools

Discover how remote access tools in exploitations across OT/ICS and corporate environments benefit from Darktrace's product suite.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Hinz
Cyber Analyst
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Aug 2022

Understanding remote access tools

In 2022, remote access tools continue to provide versatile support to organizations. By controlling devices remotely from across the globe, IT teams save on response costs, travel times, and can receive remote support from external parties like contractors [1 & 2]. This is particularly relevant in cases involving specialty machines such as OT/ICS systems where physical access is sometimes limited. These tools, however, come with their own risks. The following blog will discuss these risks and how they can be addressed (particularly in OT environments) by looking at two exploit examples from the popular sphere and within the Darktrace customer base. 

What are remote access tools?

One of the most popular remote tools is TeamViewer, a comprehensive videoconferencing and remote management tool which can be used on both desktop and handheld devices[3]. Like other sophisticated tools, when it works as intended, it can seem like magic. However, remote access tools can be exploited and may grant privileged network access to potential threat actors. Although TeamViewer needs to be installed on both perpetrator and victim devices, if an attacker has access to a misconfigured TeamViewer device, it becomes trivial to establish a foothold and deploy malware. 

How secure is remote access?

Security vulnerabilities in remote access tools

In early 2021, remote access tooling was seen on a new scale against the City of Oldsmar’s water treatment plant [4] (Figure 1). Oldsmar manages chemical concentration levels in the water for a 15,000-person city. The water treatment plant had been using TeamViewer to allow employees to share screens and work through IT issues. However, in February an employee noticed he had lost control of his mouse cursor. Initially he was unconcerned; the employee assumed that the cursor was being controlled by his boss, who regularly connected to the computer to monitor the facility’s systems. A few hours later though, the employee again saw his cursor moving out of his control and this time noticed that it was attempting to change levels of sodium hydroxide in the water supply (which is extremely dangerous for human consumption). Thankfully, the employee was able to quickly spot the changes and return them to their normal level. When looking back at the event, the key question posed by officials was where exactly the vulnerability was located in their security stack. [5]. The answer was unclear.

Photograph of compromised water plant in Florida 
Figure 1: Photograph of compromised water plant in Florida 

Tactics and strategies

When attackers get initial network access, the primary challenge for any enterprise is identifying a) that a device compromise has happened and b) how it happened. These were the same challenges seen in the Oldsmar attack. When the first physical signs of compromise occurred (cursor movement), the impacted user was still unsure whether the activity was malicious. A detailed investigation from Dragos revealed the how: evidence of a watering hole, reconnaissance activity a month prior, a targeted variant of the Tofsee botnet, and the potential presence of two separate threat actors [6 & 7]. The answer to both questions pointed to a complex attack. However, with Darktrace these questions become less important. 

How Darktrace stops compromised remote access

Darktrace does not rely on signatures but instead has AI-based models for live detection of these tools and anomalies within the wider network. Regardless of the security ‘hole’, live detection gives security teams the potential to respond in near-live time.

According to Darktrace’s Chief Product Officer, Max Heinemeyer, the Oldsmar attack was possible because it “Abused off-the-shelf tools that were already used by the client, specifically TeamViewer. This tactic, which targeted the domain controller as the initial vector, made the malware deployment easy and effective.” [8]. 

Darktrace has multiple DETECT models to provide visibility over anomalous TeamViewer or remote access tool usage:

·      Compliance / Incoming Remote Access Tool

·      Compliance / Remote Management Tool On Client

·      Compliance / Remote Management Tool On Server

·      Device / Activity Identifier / Teamviewer 

General incoming privileged connections:

·      Compliance / Incoming Remote Desktop

·      Compliance / Incoming SSH

Industrial DETECT can also highlight any new or unusual changes in ICS/OT systems:

·      ICS / Incoming ICS Command

·      ICS / Incoming RDP And ICS Commands

·      ICS / Uncommon ICS Error

Darktrace gives security teams the opportunity for a proactive response, and it is up to those teams to utilize that opportunity. In recent months our SOC Team have also seen remote access controls being abused for high-profile threats. In one example, Darktrace detected a ransomware attack supported by the installation of AnyDesk. 

Initial detection of compromise

In May a company’s mail server was detected making multiple external requests for an unusual file ‘106.exe’ using a PowerShell agent (6b79549200af33bf0322164f8a4d56a0fa08a5a62ab6a5c93a6eeef2065430ce). Although some requests were directed to sinkholes, many were otherwise successful. Subsequently a DDL file with hash f126ce9014ee87de92e734c509e1b5ab71ffb2d5a8b27171da111f96f3ba0e75 (marked by VirusTotal as malicious) was downloaded. This was followed by the installation of AnyDesk: a remote access tool likely deployed for backdoor purposes during further compromises. It is clear the threat actor then moved on to reconnaissance, with new Mimikatz use and a large volume of ICMP and SMBv.1 scanning sessions using a default credential. DCE-RPC calls were also made to the Netlogon service, suggesting a possible attempt to exploit 2020’s Zerologon vulnerability (CVE-2020-1472) [9]. When the customer then discovered a ransom note pertaining to LV (repurposed REvil), Darktrace analysts helped them to re-configure Darktrace RESPOND and turn it to active rather than human confirmation mode (Figure 2). 

Figure 2: Capture of LV ransom note provided by customer

Whilst in this instance the tool was not used for initial access, it was still an important contingency tool to ensure the threat actor’s persistency as the customer tried to respond to the ongoing breach. Yet it was the visibility provided by Darktrace model detection and changes to RESPOND configuration which ensured the customer kept up with this actor and reduced the impact of the attack. 

Looking back at Oldsmar, it is clear that being aware of remote access tools is only half the battle. More importantly, most organizations are asking if their use in attacks can be prevented in the first place. As an off-the-shelf tool, restricting TeamViewer use seems like an easy solution but such tools are often essential for maintenance and support operations. Even if limited to privileged users, these accounts are also subject to potential compromise. Instead, companies can take a large-scale view and consider the environment in which the Oldsmar attack occurred. 

How IT & OT convergence complicated this attack

In this context, the separation of OT and IT systems is a potential solution - if attackers cannot access at-risk systems, then they also cannot attack those systems. However, with recent discourse around the IT-OT convergence and increased use of IoT devices, this separation is increasingly challenging to implement [10]. Complex networking designs, stringent patching requirements and ever-changing business/operational needs are all big considerations when establishing industrial security. In fact, Tenable’s CEO Amit Yoran encouraged less separation following Oldsmar: “There’s business reasons and efficiency reasons that you might want to connect those to be able to predict when parts are going to fail or when outages are going to occur [sic].” [11]. 

When neither addressing remote access use or industrial set-up provides a quick solution, then security teams need to look to third-party support to stop similar attacks. In addition to Darktrace DETECT, our Darktrace PREVENT range with PREVENT/Attack Surface Management (ASM) can also alert security teams to internet-facing devices at risk of remote access exploitation. ASM actively queries the Shodan API for open ports on company websites and exposed servers. This highlights those assets which might be vulnerable to this type of remote access.   

Conclusion

In conclusion, TeamViewer and other remote access tools offer a lot of convenience for security teams but also for attackers. Attackers can remotely access important systems including those in the industrial network and install malware using remote access tools as leverage. Security teams need to know both their normal authorized activities and how to enforce them. With Darktrace DETECT, the tools are given transparency, with Darktrace RESPOND they can be blocked, and now Darktrace PREVENT/ASM helps to mitigate the risk of attack before it happens. As the professional world continues to embrace hybrid working, it becomes increasingly crucial to embrace these types of products and ensure protection against the dangers of unwanted remote access. 

Thanks to Connor Mooney for his contributions to this blog.

Appendices

References 

[1] https://goabacus.com/advantages-and-disadvantages-of-remote-access-service/ 

[2] https://blog.ericom.com/advantages-of-remote-access/ 

[3] https://www.teamviewer.com/en/documents/ 

[4] https://www.wired.com/story/oldsmar-florida-water-utility-hack/ 

[5 & 11] https://www.bankinfosecurity.com/ot-it-integration-raises-risk-for-water-providers-experts-say-a-18841 

[6] https://www.dragos.com/blog/industry-news/a-new-water-watering-hole/ 

[7] https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-treatment-facility-cyber-attack/

[8] https://customerportal.darktrace.com/darktrace-blogs/get-blog/53  

[9] https://www.crowdstrike.com/blog/cve-2020-1472-zerologon-security-advisory/

[10] https://www.mckinsey.com/business-functions/operations/our-insights/converge-it-and-ot-to-turbocharge-business-operations-scaling-power

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Hinz
Cyber Analyst
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness

More in this series

No items found.

Blog

/

/

May 2, 2025

SocGholish: From loader and C2 activity to RansomHub deployment

laptop and hand typingDefault blog imageDefault blog image

Over the past year, a clear pattern has emerged across the threat landscape: ransomware operations are increasingly relying on compartmentalized affiliate models. In these models, initial access brokers (IABs) [6], malware loaders, and post-exploitation operators work together.

Due to those specialization roles, a new generation of loader campaigns has risen. Threat actors increasingly employ loader operators to quietly establish footholds on the target network. These entities then hand off access to ransomware affiliates. One loader that continues to feature prominently in such campaigns is SocGholish.

What is SocGholish?

SocGholish is a loader malware that has been utilized since at least 2017 [7].  It has long been associated with fake browser updates and JavaScript-based delivery methods on infected websites.

Threat actors often target outdated or poorly secured CMS-based websites like WordPress. Through unpatched plugins, or even remote code execution flaws, they inject malicious JavaScript into the site’s HTML, templates or external JS resources [8].  Historically, SocGholish has functioned as a first-stage malware loader, ultimately leading to deployment of Cobalt Strike beacons [9], and further facilitating access persistence to corporate environments. More recently, multiple security vendors have reported that infections involving SocGholish frequently lead to the deployment of RansomHub ransomware [3] [5].

This blog explores multiple instances within Darktrace's customer base where SocGholish deployment led to subsequent network compromises. Investigations revealed indicators of compromise (IoCs) similar to those identified by external security researchers, along with variations in attacker behavior post-deployment. Key innovations in post-compromise activities include credential access tactics targeting authentication mechanisms, particularly through the abuse of legacy protocols like WebDAV and SCF file interactions over SMB.

Initial access and execution

Since January 2025, Darktrace’s Threat Research team observed multiple cases in which threat actors leveraged the SocGholish loader for initial access. Malicious actors commonly deliver SocGholish by compromising legitimate websites by injecting malicious scripts into the HTML of the affected site. When the visitor lands on an infected site, they are typically redirected to a fake browser update page, tricking them into downloading a ZIP file containing a JavaScript-based loader [1] [2]. In one case, a targeted user appears to have visited the compromised website garagebevents[.]com (IP: 35.203.175[.]30), from which around 10 MB of data was downloaded.

Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.
Figure 1: Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.

Within milliseconds of the connection establishment, the user’s device initiated several HTTPS sessions over the destination port 443 to the external endpoint 176.53.147[.]97, linked to the following Keitaro TDS domains:

  • packedbrick[.]com
  • rednosehorse[.]com
  • blackshelter[.]org
  • blacksaltys[.]com

To evade detection, SocGholish uses highly obfuscated code and relies on traffic distribution systems (TDS) [3].  TDS is a tool used in digital and affiliate marketing to manage and distribute incoming web traffic based on predefined rules. More specifically, Keitaro is a premium self-hosted TDS frequently utilized by attackers as a payload repository for malicious scripts following redirects from compromised sites. In the previously noted example, it appears that the device connected to the compromised website, which then retrieved JavaScript code from the aforementioned Keitaro TDS domains. The script served by those instances led to connections to the endpoint virtual.urban-orthodontics[.]com (IP: 185.76.79[.]50), successfully completing SocGholish’s distribution.

Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.
Figure 2: Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.

Persistence

During some investigations, Darktrace researchers observed compromised devices initiating HTTPS connections to the endpoint files.pythonhosted[.]org (IP: 151.101.1[.]223), suggesting Python package downloads. External researchers have previously noted how attackers use Python-based backdoors to maintain access on compromised endpoints following initial access via SocGholish [5].

Credential access and lateral movement

Credential access – external

Darktrace researchers identified observed some variation in kill chain activities following initial access and foothold establishment. For example, Darktrace detected interesting variations in credential access techniques. In one such case, an affected device attempted to contact the rare external endpoint 161.35.56[.]33 using the Web Distributed Authoring and Versioning (WebDAV) protocol. WebDAV is an extension of the HTTP protocol that allows users to collaboratively edit and manage files on remote web servers. WebDAV enables remote shares to be mounted over HTTP or HTTPS, similar to how SMB operates, but using web-based protocols. Windows supports WebDAV natively, which means a UNC path pointing to an HTTP or HTTPS resource can trigger system-level behavior such as authentication.

In this specific case, the system initiated outbound connections using the ‘Microsoft-WebDAV-MiniRedir/10.0.19045’ user-agent, targeting the URI path of /s on the external endpoint 161.35.56[.]33. During these requests, the host attempted to initiate NTML authentication and even SMB sessions over the web, both of which failed. Despite the session failures, these attempts also indicate a form of forced authentication. Forced authentication exploits a default behavior in Windows where, upon encountering a UNC path, the system will automatically try to authenticate to the resource using NTML – often without any user interaction. Although no files were directly retrieved, the WebDAV server was still likely able to retrieve the user’s NTLM hash during the session establishment requests, which can later be used by the adversary to crack the password offline.

Credential access – internal

In another investigated incident, Darktrace observed a related technique utilized for credential access and lateral movement. This time, the infected host uploaded a file named ‘Thumbs.scf’ to multiple internal SMB network shares. Shell Command File ( SCF) is a legacy Windows file format used primarily for Windows Explorer shortcuts. These files contain instructions for rendering icons or triggering shell commands, and they can be executed implicitly when a user simply opens a folder containing the file – no clicks required.

The ‘Thumbs.scf’ file dropped by the attacker was crafted to exploit this behavior. Its contents included a [Shell] section with the Command=2 directive and an IconFile path pointing to a remote UNC resource on the same external endpoint, 161.35.56[.]33, seen in the previously described case – specifically, ‘\\161.35.56[.]33\share\icon.ico’. When a user on the internal network navigates to the folder containing the SCF file, their system will automatically attempt to load the icon. In doing so, the system issues a request to the specified UNC path, which again prompts Windows to initiate NTML authentication.

This pattern of activity implies that the attacker leveraged passive internal exposure; users who simply browsed a compromised share would unknowingly send their NTML hashes to an external attacker-controlled host. Unlike the WebDAV approach, which required initiating outbound communication from the infected host, this SCF method relies on internal users to interact with poisoned folders.

Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.
Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.

Command-and-control

Following initial compromise, affected devices would then attempt outbound connections using the TLS/SSL protocol over port 443 to different sets of command-and-control (C2) infrastructure associated with SocGholish. The malware frequently uses obfuscated JavaScript loaders to initiate its infection chain, and once dropped, the malware communicates back to its infrastructure over standard web protocols, typically using HTTPS over port 443. However, this set of connections would precede a second set of outbound connections, this time to infrastructure linked to RansomHub affiliates, possibly facilitating the deployed Python-based backdoor.

Connectivity to RansomHub infrastructure relied on defense evasion tactics, such as port-hopping. The idea behind port-hopping is to disguise C2 traffic by avoiding consistent patterns that might be caught by firewalls, and intrusion detection systems. By cycling through ephemeral ports, the malware increases its chances of slipping past basic egress filtering or network monitoring rules that only scrutinize common web traffic ports like 443 or 80. Darktrace analysts identified systems connecting to destination ports such as 2308, 2311, 2313 and more – all on the same destination IP address associated with the RansomHub C2 environment.

Figure 4: Advanced Search connection logs showing connections over destination ports that change rapidly.

Conclusion

Since the beginning of 2025, Darktrace analysts identified a campaign whereby ransomware affiliates leveraged SocGholish to establish network access in victim environments. This activity enabled multiple sets of different post exploitation activity. Credential access played a key role, with affiliates abusing WebDAV and NTML over SMB to trigger authentication attempts. The attackers were also able to plant SCF files internally to expose NTML hashes from users browsing shared folders. These techniques evidently point to deliberate efforts at early lateral movement and foothold expansion before deploying ransomware. As ransomware groups continue to refine their playbooks and work more closely with sophisticated loaders, it becomes critical to track not just who is involved, but how access is being established, expanded, and weaponized.

Credit to Chrisina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Appendices

Darktrace / NETWORK model alerts

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Connection / New User Agent to IP Without Hostname

·       Compliance / External Windows Communication

·       Compliance / SMB Drive Write

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Large Number of Suspicious Failed Connections

·       Device / Anonymous NTML Logins

·       Device / External Network Scan

·       Device / New or Uncommon SMB Named Pipe

·       Device / SMB Lateral Movement

·       Device / Suspicious SMB Activity

·       Unusual Activity / Unusual External Activity

·       User / Kerberos Username Brute Force

MITRE ATT&CK mapping

·       Credential Access – T1187 Forced Authentication

·       Credential Access – T1110 Brute Force

·       Command and Control – T1071.001 Web Protocols

·       Command and Control – T1571 Non-Standard Port

·       Discovery – T1083 File and Directory Discovery

·       Discovery – T1018 Remote System Discovery

·       Discovery – T1046 Network Service Discovery

·       Discovery – T1135 Network Share Discovery

·       Execution – T1059.007 JavaScript

·       Lateral Movement – T1021.002 SMB/Windows Admin Shares

·       Resource Deployment – T1608.004 Drive-By Target

List of indicators of compromise (IoCs)

·       garagebevents[.]com – 35.203.175[.]30 – Possibly compromised website

·       packedbrick[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       rednosehorse[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blackshelter[.]org – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blacksaltys[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       virtual.urban-orthodontics[.]com – 185.76.79[.]50

·       msbdz.crm.bestintownpro[.]com – 166.88.182[.]126 – SocGholish C2

·       185.174.101[.]240 – RansomHub Python C2

·       185.174.101[.]69 – RansomHub Python C2

·       108.181.182[.]143 – RansomHub Python C2

References

[1] https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/socgholish-malware/

[2] https://intel471.com/blog/threat-hunting-case-study-socgholish

[3] https://www.trendmicro.com/en_us/research/25/c/socgholishs-intrusion-techniques-facilitate-distribution-of-rans.html

[4] https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

[5] https://www.guidepointsecurity.com/blog/ransomhub-affiliate-leverage-python-based-backdoor/

[6] https://www.cybereason.com/blog/how-do-initial-access-brokers-enable-ransomware-attacks

[7] https://attack.mitre.org/software/S1124/

[8] https://expel.com/blog/incident-report-spotting-socgholish-wordpress-injection/

[9] https://www.esentire.com/blog/socgholish-to-cobalt-strike-in-10-minutes

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

/

May 1, 2025

Your Vendors, Your Risk: Rethinking Third-Party Security in the Age of Supply Chain Attacks

man on cellphoneDefault blog imageDefault blog image

When most people hear the term supply chain attack, they often imagine a simple scenario: one organization is compromised, and that compromise is used as a springboard to attack another. This kind of lateral movement is common, and often the entry vector is as mundane and as dangerous as email.

Take, for instance, a situation where a trusted third-party vendor is breached. An attacker who gains access to their systems can then send malicious emails to your organization, emails that appear to come from a known and reputable source. Because the relationship is trusted, traditional phishing defenses may not be triggered, and recipients may be more inclined to engage with malicious content. From there, the attacker can establish a foothold, move laterally, escalate privileges, and launch a broader campaign.

This is one dimension of a supply chain cyber-attack, and it’s well understood in many security circles. But the risk doesn’t end there. In fact, it goes deeper, and it often hits the most important asset of all: your customers' data.

The risk beyond the inbox

What happens when customer data is shared with a third party for legitimate processing purposes for example billing, analytics, or customer service and that third party is then compromised?

In that case, your customer data is breached, even if your own systems were never touched. That’s the uncomfortable truth about modern cybersecurity: your risk is no longer confined to your own infrastructure. Every entity you share data with becomes an extension of your attack surface. Thus, we should rethink how we perceive responsibility.

It’s tempting to think that securing our environment is our job, and securing their environment is theirs. But if a breach of their environment results in the exposure of our customers, the accountability and reputational damage fall squarely on our shoulders.

The illusion of boundaries

In an era where digital operations are inherently interconnected, the lines of responsibility can blur quickly. Legally and ethically, organizations are still responsible for the data they collect even if that data is processed, stored, or analyzed by a third party. A customer whose data is leaked because of a vendor breach will almost certainly hold the original brand responsible, not the third-party processor they never heard of.

This is particularly important for industries that rely on extensive outsourcing and platform integrations (SaaS platforms, marketing tools, CRMs, analytics platforms, payment processors). The list of third-party vendors with access to customer data grows year over year. Each integration adds convenience, but also risk.

Encryption isn’t a silver bullet

One of the most common safeguards used in these data flows is encryption. Encrypting customer data in transit is a smart and necessary step, but it’s far from enough. Once data reaches the destination system, it typically needs to be decrypted for use. And the moment it is decrypted, it becomes vulnerable to a variety of attacks like ransomware, data exfiltration, privilege escalation, and more.

In other words, the question isn’t just is the data secure in transit? The more important question is how is it protected once it arrives?

A checklist for organizations evaluating third-parties

Given these risks, what should responsible organizations do when they need to share customer data with third parties?

Start by treating third-party security as an extension of your own security program. Here are some foundational controls that can make a difference:

Due diligence before engagement: Evaluate third-party vendors based on their security posture before signing any contracts. What certifications do they hold? What frameworks do they follow? What is their incident response capability?

Contractual security clauses: Build in specific security requirements into vendor contracts. These can include requirements for encryption standards, access control policies, and data handling protocols.

Third-party security assessments: Require vendors to provide evidence of their security controls. Independent audits, penetration test results, and SOC 2 reports can all provide useful insights.

Ongoing monitoring and attestations: Security isn’t static. Make sure vendors provide regular security attestations and reports. Where possible, schedule periodic reviews or audits, especially for vendors handling sensitive data.

Minimization and segmentation: Don’t send more data than necessary. Data minimization limits the exposure in the event of a breach. Segmentation, both within your environment and within vendor access levels, can further reduce risk.

Incident response planning: Ensure you have a playbook for handling third-party incidents, and that vendors do as well. Coordination in the event of a breach should be clear and rapid.

The human factor: Customers and communication

There’s another angle to supply chain cyber-attacks that’s easy to overlook: the post-breach exploitation of public knowledge. When a breach involving customer data hits the news, it doesn’t take long for cybercriminals to jump on the opportunity.

Attackers can craft phishing emails that appear to be follow-ups from the affected organization: “Click here to reset your password,” “Confirm your details due to the breach,” etc.

A breach doesn’t just put customer data at risk it also opens the door to further fraud, identity theft, and financial loss through social engineering. This is why post-breach communication and phishing mitigation strategies are valuable components of an incident response strategy.

Securing what matters most

Ultimately, protecting against supply chain cyber-attacks isn’t just about safeguarding your own perimeter. It’s about defending the integrity of your customers’ data, wherever it goes. When customer data is entrusted to you, the duty of care doesn’t end at your firewall.

Relying on vendors to “do their part” is not enough. True due diligence means verifying, validating, and continuously monitoring those extended attack surfaces. It means designing controls that assume failure is possible, and planning accordingly.

In today’s threat landscape, cybersecurity is no longer just a technical discipline. It’s a trust-building exercise. Your customers expect you to protect their information, and rightly so. And when a supply chain attack happens, whether the breach originated with you or your partner, the damage lands in the same place: your brand, your customers, your responsibility.

[related-resource]

Continue reading
About the author
Tony Jarvis
VP, Field CISO | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI