Exploring the Benefits and Risks of Third-Party Data Solutions
Many companies use third-party data management for efficiency, global access, collaboration, and reliability. Find out what those organizations need to know about addressing the security risks and best practices associated with third-party data management.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Share
03
Jun 2024
Why do companies allow third parties to handle their data?
Companies seek out third parties to handle their data for operational efficiency.
The scale and cost of maintaining in-house infrastructure can be outsourced to third parties who specialize in data management or in certain business functions.
Third parties who handle an organization’s data can range from large public cloud providers such as Azure or AWS, to boutique companies who handle specific business functions such as telemarketing, payment systems, or webpage hosting.
The operational efficiencies gained through third-party data management can be summarized by three key benefits:
Global accessibility: Third-party data storage enables data access across the globe, allowing businesses to access data from anywhere.
Enhanced collaboration: Third-party data storage allows for file sharing, real-time editing, and integration with other applications and services enhancing a business’s collaboration efforts.
Reliability and uptime: Reputable third-party storage providers offer high reliability and uptime guarantees, ensuring that data is available whenever needed. They typically have robust disaster recovery and backup systems in place to prevent data loss.
Given these benefits, it is no surprise that businesses are using these services to expand their operations and scale efforts with the need of a growing business. This strategic move not only optimizes resource allocation but also enhances operational agility, enabling businesses to adapt swiftly to evolving data demands and maintain a competitive edge in a dynamic market.
Security risks of entrusted data to third-party vendors
Entrusting data to third parties can expose businesses to supply chain risks and increase the risk of data breaches and unauthorized access. A business has less control over its data and becomes dependent on the third party's policies, practices, and uptime. Many third-party vendors are the target of hackers who specialize in monetizing sensitive data and exploiting gray areas around who is responsible for securing the data.
Thus, businesses are vulnerable when they entrust sensitive data to third-party platforms, which often lack transparency about data usage and security. The platforms, chosen mainly for cost, efficiency, and user experience, are frequent targets for cyber criminals, hacktivists, and opportunistic lone hackers looking for sensitive data accidentally exposed due to misconfigurations or poor data management policies.
Consumers are putting pressure on businesses to improve cybersecurity when handling their personal data. Businesses who suffer a data breach face a high level of scrutiny from customers, investors, the media, and governments, even when the data breach is the result of a third party’s being hacked. For example, Uber made headlines in 2022 for a data breach which was the result of a compromised vendor who had access to data regarding Uber’s employees.
Similarly, the UK’s Ministry of Defence was the victim of a data breach earlier this year when hackers targeted a third party payroll system used by the government department.
Why do cyber-criminals target third parties?
Cyber-criminals can potentially gain access to multiple networks when targeting a third-party storage provider. A successful attack could give attackers access to the networks and systems of all its clients, amplifying the impact of a single breach.
For example, when Illuminate Education was the target of a cyber-attack, the data of 23 US School Districts was stolen via its student-tracking software. It included student data from the country's two largest school systems - New York City Public Schools and Los Angeles Unified School District.
Common third-party security risks
When collaborating with third parties, organizations should be aware of the most common types of security risks posed to their cybersecurity.
Software supply chain attacks: Software supply chain attacks occur when cyber criminals infiltrate and compromise software products or updates at any point in the development or distribution process. This allows attackers to insert malicious code into legitimate software, which then gets distributed to users through trusted channels.
Human error: Human error in cybersecurity refers to mistakes made by individuals that lead to security breaches or vulnerabilities. These errors can result from lack of awareness, insufficient training, negligence, or simple mistakes.
Privileged access misuse: Privileged access misuse involves the inappropriate or unauthorized use of elevated access rights by individuals within an organization. This can include intentionally malicious actions or unintentional misuse of administrative privileges.
What to look for in a security solution when using third parties to store or manage data
Understanding the security posture of a third party is important when partnering with it and entrusting it with your organization’s data. Understanding how basic cyber hygiene policies are implemented is a good place to start, such as data retention policies, use of encryption for data in storage, and how identity and access are managed.
In some circumstances, it is important to understand who is responsible for the data’s security. For example, when using public cloud infrastructure, it is generally the responsibility of the data owner to manage how the data is accessed and stored.
In that situation, an organization needs to ensure it has solutions in place which gives it full visibility of that third-party environment, and which can proactively identify misconfigurations and detect and respond to suspicious activity in real time.
Benefits of using AI tools to aid in managing sensitive data
According to research performed by IBM, organizations with extensive use of security AI and automation identified and contained a data breach 108 days faster in 2023 than organizations that did not use AI for cybersecurity. (1) This figure is only likely to improve as companies mature in their adoption of AI for cyber security and can be a key indicator in the security posture of a third-party vendor.
Example of third-party security incidents
Sumo data breach
Sumo, an Australian energy and internet provider, suffered a data breach which they became aware of on May 13th, 2024. Further investigation into the cyber incident has found that “the personal details of approximately 40,000 customers were compromised, including approximately 3,000 Australian passport numbers.” (2)
While none of Sumo’s systems were allegedly accessed or affected and the third-party application also worked as designed (3), the incident was blamed on an unnamed third party. The breach may have been the result of a misconfiguration or human error.
This incident underscores the importance of not only selecting third-party providers with robust security measures but also continuously monitoring and assessing their security practices.
How Darktrace helps monitor third-party data usage
Darktrace/Cloud uses Self-Learning AI to provide complete cyber resilience for multi-cloud environments.
Benefits of Darktrace/Cloud:
Architectural awareness: Gives users an understanding of their cloud footprint, including real-time visibility into cloud assets, architectures, users and permissions. Combines asset enumeration, modeled architectures, and flow log analysis. Cost insights give a better understanding of resource allocation, helping teams contextualize resources.
Cloud-native detection and response: AI understands ‘normal’ for your unique business and stops cyber-threats with autonomous response. Near-real-time response goes beyond simple email alerts or opening a ticket; and includes cloud-native actions like detaching EC2 instances and applying security groups to contain risky assets.
Cloud protection and compliance: Identify compliance issues and potential misconfigurations with attack path modeling and prioritized remediation steps. Darktrace’s attack surface management (ASM) adds a critical external view of your organization, highlighting vulnerabilities most impactful to your specific situation and revealing shadow IT.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Breaking Silos: Why Unified Security is Critical in Hybrid World
Despite the growing popularity of hybrid environments, most organizations face challenges in achieving unified visibility between on-premises and cloud networks. AI-powered platform tools can bridge this gap in visibility to reduce detection and response times and simplify operations.
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Combatting the Top Three Sources of Risk in the Cloud
The biggest sources of risk in the cloud are misconfigurations, IAM failures, and infrastructure that is unprepared to handle cross-domain threats. Learn how AI-powered cloud security tools can help security teams identify and mitigate these risks.
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Cloud Security Evolution: Why Security Teams are Taking the Lead
While many internal teams contribute to general cloud hygiene, the security team has increasingly taken the lead on cloud security. Learn how AI-powered cloud detection and response tools can help these teams with new responsibilities.
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace
Real-world intrusions across Azure and AWS
As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.
This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.
The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.
Case 1 - Microsoft Azure
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.
In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.
Initial access
In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.
With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.
Detection and investigation of the threat
Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.
Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.
“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.
Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.
Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.
Persistence
Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.
Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.
The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.
Case 2 – Amazon Web Services
Figure 5: Simplified timeline of the attack on a customer’s AWS environment
In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.
How the attacker gained access
The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.
Darktrace alerting to malicious activity
This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.
The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.
Internal reconnaissance
Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.
The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.
Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.
Darktrace’s Autonomous Response
In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.
This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.
Continued reconissance
Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.
The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.
Lateral movement attempts via RDP connections
Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.
This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.
Suspicious outbound SSH communication to known threat infrastructure
Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.
Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].
Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.
The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Final containment and collaborative response
Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.
As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.
Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.
Figure 8: Simplified timeline of the attack
Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.
Initial access
On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) networkvia a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.
The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).
Lateral movement and exfiltration
Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.
The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).
What Darktrace detected
Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.
This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.
Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.
Conclusion
This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.
The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.
The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.
Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.
Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)
Top Eight Threats to SaaS Security and How to Combat Them
The latest on the identity security landscape
Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.
As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.
What is SaaS security?
SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.
Below are the top eight threats that target SaaS security and user identities.
1. Account Takeover (ATO)
Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.
2. Privilege escalation
Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.
3. Lateral movement
Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.
4. Multi-Factor Authentication (MFA) bypass and session hijacking
Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.
5. OAuth token abuse
Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.
6. Insider threats
Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.
SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.
8. Business Email Compromise (BEC) via SaaS
Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.
BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.
Protecting against these SaaS threats
Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.
However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.
AI-powered SaaS security stays ahead of the threat landscape
New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.