Blog
/
AI
/
August 4, 2021

Detecting a Cobalt Strike Attack With Darktrace AI

See how Darktrace AI was able to detect Cobalt Strike attacks by identifying anomalous connections and performing automated network reconnaissance.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Aug 2021

Since its release in 2012, Cobalt Strike has become a popular platform for red teams and ethical hackers. Robust and reliable software combined with innovative features such as DNS tunnelling, lateral movement tools for privilege escalation, and PowerShell support, have made it a desirable option for organizations wanting to test their own cyber defenses. As the framework was previously only available with a commercial license, it gave security teams a distinct advantage over threat actors when preparing for attacks.

That all changed in late 2020, when a GitHub repository appeared hosting a decompiled version of the framework. Users claimed that the leaked platform did indeed function similarly, if not identically, to the commercial version, and even included a commented-out licensing check. This suddenly made the software readily available, and highly appealing for cyber-criminals: rather than requiring a paper trail and licensing, its source code was freely available for customization and use in offensive campaigns.

With sophisticated capabilities of subtle command and control (C2), privilege escalation, and lateral movement, the tools have become a favorite for ransomware gangs. Even prior to the reporting of the leaked version, 66% of ransomware attacks were found to use Cobalt Strike.

Overview of a Cobalt Strike attack

Cobalt Strike has distinctive TTPs (tools, techniques and procedures) and evasive features for each stage of the attack.

Figure 1: Cyber kill chain with Cobalt Strike

Initial compromise can be achieved with a native module for modifying emails. This includes the insertion of malicious links into existing emails or the creation of convincing spear phishing emails.

The initial payload is intentionally lightweight and can be delivered from cheaply hosted infrastructure. The smaller file size is easier to obfuscate and can be implemented in several ways, including injection into libraries or trusted processes, or creating a series of persistence mechanisms (such as turning off anti-virus prior to downloading the full payload). As such, it is remarkably difficult to detect with blocking rules or signatures.

Network reconnaissance can be done through a variety of subtle methods, using commonly used protocols such as DNS and DCE-RPC to interrogate the network. These services are frequently used in legitimate operations, so it is challenging to apply sufficiently strict controls to prevent this stage of the attack.

Lateral movement and privilege escalation are easily accessible with pre-packaged versions of common attack tools such as Mimikatz. They can interrogate an Active Directory (AD) or steal credentials, while also using SMB pipes for peer-to-peer C2. There is little space for perimeter-based security controls to monitor and restrict these abuses, even if sufficiently granular controls could be imposed.

Payload execution is a straightforward matter as Cobalt Strike beacon allows the delivery of effectively arbitrary payloads, including portability for ransomware. As the previous evasive steps can afford the attacker privileged credentials, the deployment of such payloads could look like non-threatening administrative behavior.

AI detections

Initial compromise

Cobalt Strike has utilities for creating spear phishing documents. As email remains a prolific source of perimeter breaches, threat actors will frequently implant the tool through phishes.

One such example was detected by Darktrace’s AI at Canadian manufacturer in June 2021. The compromise started when an end user appeared to open a phishing document, evidenced by connections to Adobe and VeriSign shortly prior to an HTTP connection to a rare external IP address.

A packet capture of the anomalous connection revealed the creation of an object using a base64 encoded string – a common obfuscation technique. If the customer had been using Darktrace/Email, the threat would have been nullified before it hit the mailbox.

Shortly after the HTTP connection, Darktrace identified unusual use of SSL, which appears to have been leveraged to upgrade to HTTPS using self-signed certificates. The endpoint served an executable, which was later confirmed as a Cobalt Strike beacon based on open-source intelligence (OSINT). Such beacons are supported by the framework, with a variety of common C2 protocols available to the attacker.

Figure 2: Event log for ‘Patient Zero’ of a Sodinokibi infection

Darktrace’s detection was based on the anomalous nature of the connection (suspicious violations of standard SSL protocols) and not a pre-defined rule. The initial compromise was detected in a matter of minutes.

Network reconnaissance

In another example at a Swiss telecommunications company in April 2021, Darktrace alerted the security team that a device – normally used for data collection – was engaging in suspicious lateral movement activity.

The host was abusing privileged credentials to perform AD reconnaissance and SMB enumeration. The alert then prompted a broader investigation, revealing that multiple devices, including domain controllers, were compromised with IoCs related to Cobalt Strike.

Thanks to Darktrace’s deep understanding of the business and recognition that this behavior was anomalous, the security team were able to remediate the infection before file encryption or large data exfiltration had occurred.

Privilege escalation and ransomware deployment

In a ransomware attack against a South African insurance company in May 2021, where a phishing email resulted in the deployment of ransomware, Darktrace first identified the creation of new administrative credentials. The devices which used the credentials were then seen making anomalous connections to various C2 endpoints associated with Cobalt Strike beacons.

Darktrace enabled the rapid identification of compromised hosts, which in turn allowed for a faster remediation and mitigated fears of a resurgent infection.

Cyber AI Analyst performed a machine-speed investigation of the activity, and automatically produced a report highlighting unusual connections on TCP port 4444 as well as other mail related ports. Port 4444 is the default port for Metasploit, another hacking platform which is often seen in conjunction with Cobalt Strike beacon. It then presented the human analysts with a full list of compromised hosts.

Figure 3: Cyber AI Analyst summary of an affected host using non-standard ports for C2 and subsequently scanning the network

Cobalt Strike malware

As it appears that a cheaply accessible analog of Cobalt Strike has been leaked, detection of the framework is critical to defend against active attackers. Signatures and rule-based restrictions prove ineffective in this regard, as the framework was designed specifically to evade such tools.

Darktrace offers the capability to detect malicious activity in its earliest stages, to triage at the speed of AI, and to autonomously block the proliferation of active threats.

Thanks to Darktrace analyst Roberto Romeu for his insights on the above threat find.

Learn how Darktrace caught APT41 leveraging Cobalt Strike

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Amel Edmond
Chief Information Officer
Your data. Our AI.
Elevate your network security with Darktrace AI