Blog
/
AI
/
August 4, 2021

Detecting a Cobalt Strike Attack With Darktrace AI

See how Darktrace AI was able to detect Cobalt Strike attacks by identifying anomalous connections and performing automated network reconnaissance.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Aug 2021

Since its release in 2012, Cobalt Strike has become a popular platform for red teams and ethical hackers. Robust and reliable software combined with innovative features such as DNS tunnelling, lateral movement tools for privilege escalation, and PowerShell support, have made it a desirable option for organizations wanting to test their own cyber defenses. As the framework was previously only available with a commercial license, it gave security teams a distinct advantage over threat actors when preparing for attacks.

That all changed in late 2020, when a GitHub repository appeared hosting a decompiled version of the framework. Users claimed that the leaked platform did indeed function similarly, if not identically, to the commercial version, and even included a commented-out licensing check. This suddenly made the software readily available, and highly appealing for cyber-criminals: rather than requiring a paper trail and licensing, its source code was freely available for customization and use in offensive campaigns.

With sophisticated capabilities of subtle command and control (C2), privilege escalation, and lateral movement, the tools have become a favorite for ransomware gangs. Even prior to the reporting of the leaked version, 66% of ransomware attacks were found to use Cobalt Strike.

Overview of a Cobalt Strike attack

Cobalt Strike has distinctive TTPs (tools, techniques and procedures) and evasive features for each stage of the attack.

Figure 1: Cyber kill chain with Cobalt Strike

Initial compromise can be achieved with a native module for modifying emails. This includes the insertion of malicious links into existing emails or the creation of convincing spear phishing emails.

The initial payload is intentionally lightweight and can be delivered from cheaply hosted infrastructure. The smaller file size is easier to obfuscate and can be implemented in several ways, including injection into libraries or trusted processes, or creating a series of persistence mechanisms (such as turning off anti-virus prior to downloading the full payload). As such, it is remarkably difficult to detect with blocking rules or signatures.

Network reconnaissance can be done through a variety of subtle methods, using commonly used protocols such as DNS and DCE-RPC to interrogate the network. These services are frequently used in legitimate operations, so it is challenging to apply sufficiently strict controls to prevent this stage of the attack.

Lateral movement and privilege escalation are easily accessible with pre-packaged versions of common attack tools such as Mimikatz. They can interrogate an Active Directory (AD) or steal credentials, while also using SMB pipes for peer-to-peer C2. There is little space for perimeter-based security controls to monitor and restrict these abuses, even if sufficiently granular controls could be imposed.

Payload execution is a straightforward matter as Cobalt Strike beacon allows the delivery of effectively arbitrary payloads, including portability for ransomware. As the previous evasive steps can afford the attacker privileged credentials, the deployment of such payloads could look like non-threatening administrative behavior.

AI detections

Initial compromise

Cobalt Strike has utilities for creating spear phishing documents. As email remains a prolific source of perimeter breaches, threat actors will frequently implant the tool through phishes.

One such example was detected by Darktrace’s AI at Canadian manufacturer in June 2021. The compromise started when an end user appeared to open a phishing document, evidenced by connections to Adobe and VeriSign shortly prior to an HTTP connection to a rare external IP address.

A packet capture of the anomalous connection revealed the creation of an object using a base64 encoded string – a common obfuscation technique. If the customer had been using Darktrace/Email, the threat would have been nullified before it hit the mailbox.

Shortly after the HTTP connection, Darktrace identified unusual use of SSL, which appears to have been leveraged to upgrade to HTTPS using self-signed certificates. The endpoint served an executable, which was later confirmed as a Cobalt Strike beacon based on open-source intelligence (OSINT). Such beacons are supported by the framework, with a variety of common C2 protocols available to the attacker.

Figure 2: Event log for ‘Patient Zero’ of a Sodinokibi infection

Darktrace’s detection was based on the anomalous nature of the connection (suspicious violations of standard SSL protocols) and not a pre-defined rule. The initial compromise was detected in a matter of minutes.

Network reconnaissance

In another example at a Swiss telecommunications company in April 2021, Darktrace alerted the security team that a device – normally used for data collection – was engaging in suspicious lateral movement activity.

The host was abusing privileged credentials to perform AD reconnaissance and SMB enumeration. The alert then prompted a broader investigation, revealing that multiple devices, including domain controllers, were compromised with IoCs related to Cobalt Strike.

Thanks to Darktrace’s deep understanding of the business and recognition that this behavior was anomalous, the security team were able to remediate the infection before file encryption or large data exfiltration had occurred.

Privilege escalation and ransomware deployment

In a ransomware attack against a South African insurance company in May 2021, where a phishing email resulted in the deployment of ransomware, Darktrace first identified the creation of new administrative credentials. The devices which used the credentials were then seen making anomalous connections to various C2 endpoints associated with Cobalt Strike beacons.

Darktrace enabled the rapid identification of compromised hosts, which in turn allowed for a faster remediation and mitigated fears of a resurgent infection.

Cyber AI Analyst performed a machine-speed investigation of the activity, and automatically produced a report highlighting unusual connections on TCP port 4444 as well as other mail related ports. Port 4444 is the default port for Metasploit, another hacking platform which is often seen in conjunction with Cobalt Strike beacon. It then presented the human analysts with a full list of compromised hosts.

Figure 3: Cyber AI Analyst summary of an affected host using non-standard ports for C2 and subsequently scanning the network

Cobalt Strike malware

As it appears that a cheaply accessible analog of Cobalt Strike has been leaked, detection of the framework is critical to defend against active attackers. Signatures and rule-based restrictions prove ineffective in this regard, as the framework was designed specifically to evade such tools.

Darktrace offers the capability to detect malicious activity in its earliest stages, to triage at the speed of AI, and to autonomously block the proliferation of active threats.

Thanks to Darktrace analyst Roberto Romeu for his insights on the above threat find.

Learn how Darktrace caught APT41 leveraging Cobalt Strike

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI