Blog
/
/
November 29, 2020

Darktrace Cyber Analyst Investigates Sodinokibi Ransomware

Darktrace’s Cyber AI Analyst uncovers the intricate details of a Sodinokibi ransomware attack on a retail organization. Dive into this real-time incident.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2020

Sodinokibi is one of the most lucrative ransomware strains of 2020, with its creators, cyber-criminal gang REvil, recently claiming over $100 million in profits this year alone. The prevalent threat is known to wipe backup files, encrypt files on local shares and exfiltrate data.

Exfiltration before encryption is a technique being increasingly adopted by profit-seeking cyber-criminals, who can threaten to leak the stolen data should a target organization not comply with their demands. Sodinobiki also makes heavy use of code obfuscation and encryption techniques to evade detection by signature-based, anti-virus solutions.

Darktrace’s AI recently detected Sodinokibi targeting a retail organization in the US. Prior to this year, the company operated primarily face-to-face in physical stores, but have conducted the majority of their business in the digital realm since the onset of the pandemic.

Cyber AI Analyst automatically launched a full investigation into this incident in real time, as the attack was unfolding. The technology provided summary reports of the entire incident which the security team could immediately action for incident response. This blog explores its findings.

Sodinokibi timeline

Darktrace automatically investigated on the full scope of the Sodinokibi attack, with Cyber AI Analyst clearly identifying and summarising every stage of the attack lifecycle, which played out over the course of three weeks as below:

Figure 1: A timeline of the attack

Darktrace produced a large number of security-relevant anomalies associated with just three credentials, and displayed these along a common timeline shown below:

Figure 2: A timeline view of anomaly detections separated by users. Note the clusters of model breaches for the compromised credentials leading up to October 14.

While a human analyst might have been able to identify these unusual patterns and investigate what caused the clusters of anomalous activity, this process would have taken precious hours during a crisis. Cyber AI Analyst automatically performed the same analysis using supervised machine learning trained on Darktrace’s world-leading analysts, generating meaningful summaries of each stage of the event in real time, as the incident unfolded.

REvil ransomware attack

The following events occurred during a free trial period, and Darktrace was not being actively monitored. Its Autonomous Response technology, Darktrace Antigena, was installed in passive mode, and in the absence of automatic interference at an early stage, this compromise was allowed to unfold without interruption. However, with Darktrace’s AI learning normal ‘patterns of life’ for every device in the background, identifying anomalies, and launching an automated investigation into the attack, we are able to go back into the Threat Visualizer and see how the incident unfolded.

The attack began when the credentials of a highly privileged member of the retail organization’s IT team were compromised. REvil is known to make use of phishing emails, exploit kits, server vulnerabilities, and compromised MSP networks for initial intrusion.

In this case, the attacker used the IT credential to compromise a domain controller and exfiltrate data directly after initial reconnaissance. Darktrace’s AI detected the attacker logging into the domain controller via SMB, writing suspicious files and then deleting batch scripts and log files in the root directory to clear their tracks.

The domain controller then made connections to several rare external endpoints, and Darktrace witnessed a 28MB upload that was likely exfiltration of initial reconnaissance data. Four days later, the attacker connected to the same endpoint (sadstat[.]com) – likely a stager download for C2, which was then initiated via connections on port 443 later that same day.

A week on from the intial C2 connection, a SQL server was detected engaging in network scanning as the attacker sought to move laterally in search of sensitive and valuable data. Over the course of two weeks, Darktrace witnessed unusual internal RDP connections using administrative credentials, before data was uploaded to multiple cloud storage endpoints as well as an SSH server. PsExec was used to deploy the ransomware, resulting in file encryption.

The evasive nature of modern ransomware

REvil started with an inherent advantage in that they were armed with the credentials of a highly privileged IT admin. Nevertheless, they still made several attempts to evade traditional, signature-based tools, such as ‘Living off the Land’ – using common tools such PsExec, WMI, RDP to blend into to legitimate activity.

They leveraged frequently-used cloud storage solutions like Dropbox and pCloud for data transfer, and they conducted SSH on port 443, blending in with SSL connections on the same port. They used a newly-registered domain for C2 communication, meaning Open Source Intelligence Tools (OSINT) were blind to the threat.

Finally, the malware itself was evasive in that it made use of code obfuscation and encryption, and had no need for a system library or API imports. This is the basis for most modern ransomware attacks, and the reality is signature-based tools cannot keep up. Darktrace’s AI not only detected the anomalous activity associated with every stage of the attack, but generated fleshed-out summaries of each stage of the attack with Cyber AI Analyst.

Cyber AI Analyst: Real-time incident reporting

Between September 21 and October 12, Cyber AI Analyst created 15 incidents, investigating dozens of point detections and creating a coherent attack narrative.

Figure 3: Cyber AI Incident log of the first compromised DC. This incident tab details the connections to sadstat[.]com

Figure 4: The DC establishes C2 to the first GHOSTnet GmbH IP

Figure 5: This incident tab highlights the file encryption of files on network shares

Figure 6: Darktrace surfaces the IT admin account takeover

Figure 7: Example of a client type device involved in extensive administrative RDP and SMB activity, as well as data uploads to Dropbox (this upload to Dropbox occurs few seconds before file encryption begins)

REvil vs AI

This Sodinokibi ransomware attack slipped under the radar of a range of traditional tools deployed by the retail organization. However, despite the threat dwelling in the retail organization’s digital environment for over a month, and REvil using local tools to blend in to regular traffic, from Darktrace’s perspective these actions were noisy in comparison to the organization’s normal ‘pattern of life’, setting off a series of alerts and investigations.

Darktrace’s Cyber AI Analyst was able to autonomously investigate nearly every attack phase of the ransomware. The technology works around the clock, without requiring training or time off, and can often reduce hours or days of incident response into just minutes, reducing time to triage by up to 92% and augmenting the capabilities of the human security team.

Thanks to Darktrace analyst Joel Lee for his insights on the above threat find.

Learn more about Cyber AI Analyst

Darktrace model detections:

  • Anomalous Connection / Active Remote Desktop Tunnel
  • Anomalous Connection / Data Sent To New External Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Unusual Admin RDP Session
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compliance / SMB Drive Write
  • Compliance / Possible Tor Usage
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Compromise / Ransomware / Suspicious SMB Activity
  • Device / ICMP Address Scan
  • Device / Multiple Lateral Movement Model Breaches
  • Device / Network Scan
  • Device / New or Uncommon WMI Activity
  • Device / New or Unusual Remote Command Execution
  • Device / RDP Scan
  • Device / Suspicious Network Scan Activity
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Unusual Activity / Unusual Internal Connections
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

May 7, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace is an anomaly-based detection tool. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor  logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure  to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN). The actor then conducted mass email deletions , deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI