Blog

Cloud

Darktrace Vers. 5: AI Transforming Enterprise Security

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Jan 2021
24
Jan 2021
Darktrace's Immune System Version 5 revolutionizes cybersecurity with AI, cloud service coverage, and seamless integrations.

Today’s workforce is more dispersed and mobile than ever before, with critical operations increasingly residing in a diverse patchwork of cloud services and endpoints. This architectural shift has been met by attacks that have scaled up to capitalize on insufficiently protected data and devices, emphasizing the need for enterprise security to be adaptive, autonomous, and ubiquitous.

Increasing demands placed on the SOC have stretched security teams to breaking point, and CISOs now progressively seek to streamline workflows by favoring self-learning enterprise-wide security platforms over disparate and siloed point solutions with limited visibility.

Version 5 offers a series of innovations across Darktrace’s Immune System platform, bringing critical value to security teams grappling with the new normal. This free upgrade for existing customers allows for on-demand automated investigations, supports one-click integrations with a wide range of technologies, and showcases an improved Model Editor that allows security teams to tailor Darktrace even further to their specific business risks.

Darktrace’s Immune System has been enhanced in three critical areas: in the augmentation of its core AI capabilities, in extended coverage to SaaS applications and zero-trust environments, and an open architecture which streamlines workflows across the cyber security stack.

AI augmentation

Last year saw the introduction of new technologies, services, data flows, and topologies. Static rules and signature-based defenses were unable to adapt to changing users and working practices, no matter how diligently and rapidly they were rewritten. We have seen an urgent need for augmentation, and to that end Version 5 enhances Darktrace’s self-learning capabilities across two core areas of the platform: Autonomous Response and AI Investigation.

By containing machine-speed threats like ransomware in seconds, Autonomous Response enables security teams to prioritize strategic work even as the volume and speed of attacks continues to rise. Darktrace Antigena can either take self-directed action or integrate with existing investments, informing third-party systems about in-progress cyber-attacks.

With Version 5, Antigena can now neutralize attacks in a wide variety of SaaS services like Zoom and Microsoft Teams, as well as cloud file storage applications like SharePoint and OneDrive. In cases of account takeover, Antigena can autonomously respond, protecting sensitive data in the cloud without any human intervention.

Cyber AI Analyst also now automates investigations beyond network events to SaaS applications, cloud infrastructure, and cyber-physical systems. Version 5 enables on-demand investigations into users and devices of interest, the ingestion of third-party alerts to trigger new investigations, and seamless integration with any SIEM, SOAR, or downstream ticketing system.

Customers have already found that the new capabilities in Cyber AI Analyst have added substantial value, especially in the ability to launch on-demand investigations and query SaaS data at any time.

Dynamic workforce protection

In addition to the extension of AI-enabled investigations and response, Darktrace Version 5 complements native cloud and SaaS defenses with a range of critical enhancements, including a dedicated SaaS Console, and integrations with Zoom, Okta, Microsoft Teams, Slack, Duo, and more. Equally, new ingestion capabilities for zero-trust technologies enable Darktrace to protect employees wherever they operate.

Figure 1: Dedicated SaaS Console

Customers can also now choose to purchase Client Sensors that extend the Immune System’s visibility of the dynamic workforce on and off the VPN. With Client Sensors, organizations can take Darktrace’s existing real-time analysis and tie it in with risky or malicious behavior that may be occurring off the VPN.

Antigena Email, the world’s first self-learning email security solution, has also been enhanced with Version 5. Not only does the technology detect the subtle deviations in threatening emails that other tools miss, but with text-based summarization, the story behind every email is automatically generated in plain English so that even a non-technical reader can fully understand why specific actions were taken.

Open architecture and interoperability

Flexibility and the ability to integrate with existing enterprise security investments lie at the core of the Darktrace Immune System, and Version 5 extends its open and extensible architecture to seamlessly integrate with your existing investments. New functionality enables customers to enhance and extend their Darktrace deployment via one-click integrations. This includes the ability to immediately extend coverage to new cloud services, and enrich the platform’s analysis with new sources of log ingestion.

Version 5 also sees the introduction of bespoke new interfaces that cover the different areas of the digital infrastructure – from the aforementioned SaaS Console to a specialized OT Engineer View. These inclusions represent an overarching design principle of unification, and the interfaces are harmonized accordingly to facilitate seamless investigations and simplified workflows.

Figure 2: An autonomous investigation into anomalous cloud activity

Our customers are increasingly using the Immune System protect their business across email, SaaS, and industrial systems as well as the corporate network, and Version 5 makes it easier than ever to defend these environments.

Version 5 not only expands the Darktrace Immune System to new areas of the business, but also ensures that this expansion delivers a seamless experience for customers, regardless of where they start their journey with the platform. Delivery and expansion are entirely flexible, with the option of 100% cloud-delivered deployments, or hybrid deployments that cover on-premise and cloud environments.

Enterprise security: Innovating through times of change

As organizations accelerate digital transformation and prepare for the future of work, the ability to quickly adapt and integrate their security defenses will be more critical than ever. And with the new AI augmentation and extended coverage of Darktrace’s core self-learning technology, Version 5 ensures that customers can detect, contain, and investigate threats wherever they arise, without placing any additional burden on security teams.

Find out more about Darktrace Version 5

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
No items found.
Book a 1-1 meeting with one of our experts
share this article

More in this series

No items found.

Safeguarding Distribution Centers in the Digital Age

Default blog imageDefault blog image
12
Jun 2024

Challenges securing distribution centers

For large retail providers, e-commerce organizations, logistics & supply chain organizations, and other companies who rely on the distribution of goods to consumers cybersecurity efforts are often focused on an immense IT infrastructure. However, there's a critical, often overlooked segment of infrastructure that demands vigilant monitoring and robust protection: distribution centers.

Distribution centers play a critical role in the business operations of supply chains, logistics, and the retail industry. They serve as comprehensive logistics hubs, with many organizations operating multiple centers worldwide to meet consumer needs. Depending on their size and hours of operation, even just one hour of downtime at these centers can result in significant financial losses, ranging from tens to hundreds of thousands of dollars per hour.

Due to the time-sensitive nature and business criticality of distribution centers, there has been a rise in applying modern technologies now including AI applications to enhance efficiency within these facilities. Today’s distribution centers are increasingly connected to Enterprise IT networks, the cloud and the internet to manage every stage of the supply chain. Additionally, it is common for organizations to allow 3rd party access to the distribution center networks and data for reasons including allowing them to scale their operations effectively.

However, this influx of new technologies and interconnected systems across IT, OT and cloud introduces new risks on the cybersecurity front. Distribution center networks include industrial operational technologies ICS/OT, IoT technologies, enterprise network technology, and cloud systems working in coordination. The convergence of these technologies creates a greater chance that blind spots exist for security practitioners and this increasing presence of networked technology increases the attack surface and potential for vulnerability. Thus, having cybersecurity measures that cover IT, OT or Cloud alone is not enough to secure a complex and dynamic distribution center network infrastructure.  

The OT network encompasses various systems, devices, hardware, and software, such as:

  • Enterprise Resource Planning (ERP)
  • Warehouse Execution System (WES)
  • Warehouse Control System (WCS)
  • Warehouse Management System (WMS)
  • Energy Management Systems (EMS)
  • Building Management Systems (BMS)
  • Distribution Control Systems (DCS)
  • Enterprise IT devices
  • OT and IoT: Engineering workstations, ICS application and management servers, PLCs, HMI, access control, cameras, and printers
  • Cloud applications

Distribution centers: An expanding attack surface

As these distribution centers have become increasingly automated, connected, and technologically advanced, their attack surfaces have inherently increased. Distribution centers now have a vastly different potential for cyber risk which includes:  

  • More networked devices present
  • Increased routable connectivity within industrial systems
  • Externally exposed industrial control systems
  • Increased remote access
  • IT/OT enterprise to industrial convergence
  • Cloud connectivity
  • Contractors, vendors, and consultants on site or remoting in  

Given the variety of connected systems, distribution centers are more exposed to external threats than ever before. Simultaneously, distribution center’s business criticality has positioned them as interesting targets to cyber adversaries seeking to cause disruption with significant financial impact.

Increased connectivity requires a unified security approach

When assessing the unique distribution center attack surface, the variety of interconnected systems and devices requires a cybersecurity approach that can cover the diverse technology environment.  

From a monitoring and visibility perspective, siloed IT, OT or cloud security solutions cannot provide the comprehensive asset management, threat detection, risk management, and response and remediation capabilities across interconnected digital infrastructure that a solution natively covering IT, cloud, OT, and IoT can provide.  

The problem with using siloed cybersecurity solutions to cover a distribution center is the visibility gaps that are inherently created when using multiple solutions to try and cover the totality of the diverse infrastructure. What this means is that for cross domain and multi-stage attacks, depending on the initial access point and where the adversary plans on actioning their objectives, multiple stages of the attack may not be detected or correlated if they security solutions lack visibility into OT, IT, IoT and cloud.

Comprehensive security under one solution

Darktrace leverages Self-Learning AI, which takes a new approach to cybersecurity. Instead of relying on rules and signatures, this AI trains on the specific business to learn a ‘pattern of life’ that models normal activity for every device, user, and connection. It can be applied anywhere an organization has data, and so can natively cover IT, OT, IoT, and cloud.  

With these models, Darktrace /OT provides improved visibility, threat detection and response, and risk management for proactive hardening recommendations.  

Visibility: Darktrace is the only OT security solution that natively covers IT, IoT and OT in unison. AI augmented workflows ensure OT cybersecurity analysts and operation engineers can manage IT and OT environments, leveraging a live asset inventory and tailored dashboards to optimize security workflows and minimize operator workload.

Threat detection, investigation, and response: The AI facilitates anomaly detection capable of detecting known, unknown, and insider threats and precise response for OT environments that contains threats at their earliest stages before they can jeopardize control systems. Darktrace immediately understands, identifies, and investigates all anomalous activity in OT networks, whether human or machine driven and uses Explainable AI to generate investigation reports via Darktrace’s Cyber AI Analyst.

Proactive risk identification: Risk management capabilities like attack path modeling can prioritize remediation and mitigation that will most effectively reduce derived risk scores. Rather than relying on knowledge of past attacks and CVE lists and scores, Darktrace AI learns what is ‘normal’ for its environment, discovering previously unknown threats and risks by detecting subtle shifts in behavior and connectivity. Through the application of Darktrace AI for OT environments, security teams can investigate novel attacks, discover blind spots, get live-time visibility across all their physical and digital assets, and reduce the time to detect, respond to, and triage security events.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology

Blog

Inside the SOC

Medusa Ransomware: Looking Cyber Threats in the Eye with Darktrace

Default blog imageDefault blog image
10
Jun 2024

What is Living off the Land attack?

In the face of increasingly vigilant security teams and adept defense tools, attackers are continually looking for new ways to circumvent network security and gain access to their target environments. One common tactic is the leveraging of readily available utilities and services within a target organization’s environment in order to move through the kill chain; a popular method known as living off the land (LotL). Rather than having to leverage known malicious tools or write their own malware, attackers are able to easily exploit the existing infrastructure of their targets.

The Medusa ransomware group in particular are known to extensively employ LotL tactics, techniques and procedures (TTPs) in their attacks, as one Darktrace customer in the US discovered in early 2024.

What is Medusa Ransomware?

Medusa ransomware (not to be confused with MedusaLocker) was first observed in the wild towards the end of 2022 and has been a popular ransomware strain amongst threat actors since 2023 [1]. Medusa functions as a Ransomware-as-a-Service (RaaS) platform, providing would-be attackers, also know as affiliates, with malicious software and infrastructure required to carry out disruptive ransomware attacks. The ransomware is known to target organizations across many different industries and countries around the world, including healthcare, education, manufacturing and retail, with a particular focus on the US [2].

How does medusa ransomware work?

Medusa affiliates are known to employ a number of TTPs to propagate their malware, most prodominantly gaining initial access by exploiting vulnerable internet-facing assets and targeting valid local and domain accounts that are used for system administration.

The ransomware is typically delivered via phishing and spear phishing campaigns containing malicious attachments [3] [4], but it has also been observed using initial access brokers to access target networks [5]. In terms of the LotL strategies employed in Medusa compromises, affiliates are often observed leveraging legitimate services like the ConnectWise remote monitoring and management (RMM) software and PDQ Deploy, in order to evade the detection of security teams who may be unable to distinguish the activity from normal or expected network traffic [2].

According to researchers, Medusa has a public Telegram channel that is used by threat actors to post any data that may have been stolen, likely in an attempt to extort organizations and demand payment [2].  

Darktrace’s Coverage of Medusa Ransomware

Established Foothold and C2 activity

In March 2024, Darktrace /NETWORK identified over 80 devices, including an internet facing domain controller, on a customer network performing an unusual number of activities that were indicative of an emerging ransomware attack. The suspicious behavior started when devices were observed making HTTP connections to the two unusual endpoints, “wizarr.manate[.]ch” and “go-sw6-02.adventos[.]de”, with the PowerShell and JWrapperDownloader user agents.

Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the connections and was able to connect the seemingly separate events into one wider incident spanning multiple different devices. This allowed the customer to visualize the activity in chronological order and gain a better understanding of the scope of the attack.

At this point, given the nature and rarity of the observed activity, Darktrace /NETWORK's autonomous response would have been expected to take autonomous action against affected devices, blocking them from making external connections to suspicious locations. However, autonomous response was not configured to take autonomous action at the time of the attack, meaning any mitigative actions had to be manually approved by the customer’s security team.

Internal Reconnaissance

Following these extensive HTTP connections, between March 1 and 7, Darktrace detected two devices making internal connection attempts to other devices, suggesting network scanning activity. Furthermore, Darktrace identified one of the devices making a connection with the URI “/nice ports, /Trinity.txt.bak”, indicating the use of the Nmap vulnerability scanning tool. While Nmap is primarily used legitimately by security teams to perform security audits and discover vulnerabilities that require addressing, it can also be leveraged by attackers who seek to exploit this information.

Darktrace / NETWORK model alert showing the URI “/nice ports, /Trinity.txt.bak”, indicating the use of Nmap.
Figure 1: Darktrace /NETWORK model alert showing the URI “/nice ports, /Trinity.txt.bak”, indicating the use of Nmap.

Darktrace observed actors using multiple credentials, including “svc-ndscans”, which was also seen alongside DCE-RPC activity that took place on March 1. Affected devices were also observed making ExecQuery and ExecMethod requests for IWbemServices. ExecQuery is commonly utilized to execute WMI Query Language (WQL) queries that allow the retrieval of information from WI, including system information or hardware details, while ExecMethod can be used by attackers to gather detailed information about a targeted system and its running processes, as well as a tool for lateral movement.

Lateral Movement

A few hours after the first observed scanning activity on March 1, Darktrace identified a chain of administrative connections between multiple devices, including the aforementioned internet-facing server.

Cyber AI Analyst was able to connect these administrative connections and separate them into three distinct ‘hops’, i.e. the number of administrative connections made from device A to device B, including any devices leveraged in between. The AI Analyst investigation was also able to link the previously detailed scanning activity to these administrative connections, identifying that the same device was involved in both cases.

Cyber AI Analyst investigation into the chain of lateral movement activity.
Figure 2: Cyber AI Analyst investigation into the chain of lateral movement activity.

On March 7, the internet exposed server was observed transferring suspicious files over SMB to multiple internal devices. This activity was identified as unusual by Darktrace compared to the device's normal SMB activity, with an unusual number of executable (.exe) and srvsvc files transferred targeting the ADMIN$ and IPC$ shares.

Cyber AI Analyst investigation into the suspicious SMB write activity.
Figure 3: Cyber AI Analyst investigation into the suspicious SMB write activity.
Graph highlighting the number of successful SMB writes and the associated model alerts.
Figure 4: Graph highlighting the number of successful SMB writes and the associated model alerts.

The threat actor was also seen writing SQLite3*.dll files over SMB using a another credential this time. These files likely contained the malicious payload that resulted in the customer’s files being encrypted with the extension “.s3db”.

Darktrace’s visibility over an affected device performing successful SMB writes.
Figure 5: Darktrace’s visibility over an affected device performing successful SMB writes.

Encryption of Files

Finally, Darktrace observed the malicious actor beginning to encrypt and delete files on the customer’s environment. More specifically, the actor was observed using credentials previously seen on the network to encrypt files with the aforementioned “.s3db” extension.

Darktrace’s visibility over the encrypted files.
Figure 6: Darktrace’s visibility over the encrypted files.


After that, Darktrace observed the attacker encrypting  files and appending them with the extension “.MEDUSA” while also dropping a ransom note with the file name “!!!Read_me_Medusa!!!.txt”

Darktrace’s detection of threat actors deleting files with the extension “.MEDUSA”.
Figure 7: Darktrace’s detection of threat actors deleting files with the extension “.MEDUSA”.
Darktrace’s detection of the Medusa ransom note.
Figure 8: Darktrace’s detection of the Medusa ransom note.

At the same time as these events, Darktrace observed the attacker utilizing a number of LotL techniques including SSL connections to “services.pdq[.]tools”, “teamviewer[.]com” and “anydesk[.]com”. While the use of these legitimate services may have bypassed traditional security tools, Darktrace’s anomaly-based approach enabled it to detect the activity and distinguish it from ‘normal’’ network activity. It is highly likely that these SSL connections represented the attacker attempting to exfiltrate sensitive data from the customer’s network, with a view to using it to extort the customer.

Cyber AI Analyst’s detection of “services.pdq[.]tools” usage.
Figure 9: Cyber AI Analyst’s detection of “services.pdq[.]tools” usage.

If this customer had been subscribed to Darktrace's Proactive Threat Notification (PTN) service at the time of the attack, they would have been promptly notified of these suspicious activities by the Darktrace Security Operation Center (SOC). In this way they could have been aware of the suspicious activities taking place in their infrastructure before the escalation of the compromise. Despite this, they were able to receive assistance through the Ask the Expert service (ATE) whereby Darktrace’s expert analyst team was on hand to assist the customer by triaging and investigating the incident further, ensuring the customer was well equipped to remediate.  

As Darktrace /NETWORK's autonomous response was not enabled in autonomous response mode, this ransomware attack was able to progress to the point of encryption and data exfiltration. Had autonomous response been properly configured to take autonomous action, Darktrace would have blocked all connections by affected devices to both internal and external endpoints, as well as enforcing a previously established “pattern of life” on the device to stop it from deviating from its expected behavior.

Conclusion

The threat actors in this Medusa ransomware attack attempted to utilize LotL techniques in order to bypass human security teams and traditional security tools. By exploiting trusted systems and tools, like Nmap and PDQ Deploy, attackers are able to carry out malicious activity under the guise of legitimate network traffic.

Darktrace’s Self-Learning AI, however, allows it to recognize the subtle deviations in a device’s behavior that tend to be indicative of compromise, regardless of whether it appears legitimate or benign on the surface.

Further to the detection of the individual events that made up this ransomware attack, Darktrace’s Cyber AI Analyst was able to correlate the activity and collate it under one wider incident. This allowed the customer to track the compromise and its attack phases from start to finish, ensuring they could obtain a holistic view of their digital environment and remediate effectively.

Credit to Maria Geronikolou, Cyber Analyst, Ryan Traill, Threat Content Lead

Appendices

Darktrace DETECT Model Detections

Anomalous Connection / SMB Enumeration

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Suspicious SMB Scanning Activity

Device / Attack and Recon Tools

Device / Suspicious File Writes to Multiple Hidden SMB Share

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Device / Internet Facing Device with High Priority Alert

Device / Network Scan

Anomalous Connection / Powershell to Rare External

Device / New PowerShell User Agent

Possible HTTP Command and Control

Extensive Suspicious DCE-RPC Activity

Possible SSL Command and Control to Multiple Endpoints

Suspicious Remote WMI Activity

Scanning of Multiple Devices

Possible Ransom Note Accessed over SMB

List of Indicators of Compromise (IoCs)

IoC – Type – Description + Confidence

207.188.6[.]17      -     IP address   -      C2 Endpoint

172.64.154[.]227 - IP address -        C2 Endpoint

wizarr.manate[.]ch  - Hostname -       C2 Endpoint

go-sw6-02.adventos[.]de.  Hostname  - C2 Endpoint

.MEDUSA             -        File extension     - Extension to encrypted files

.s3db               -             File extension    -  Created file extension

SQLite3-64.dll    -        File           -               Used tool

!!!Read_me_Medusa!!!.txt - File -   Ransom note

Svc-ndscans         -         Credential     -     Possible compromised credential

Svc-NinjaRMM      -       Credential      -     Possible compromised credential

MITRE ATT&CK Mapping

Discovery  - File and Directory Discovery - T1083

Reconnaissance    -  Scanning IP            -          T1595.001

Reconnaissance -  Vulnerability Scanning -  T1595.002

Lateral Movement -Exploitation of Remote Service -  T1210

Lateral Movement - Exploitation of Remote Service -   T1210

Lateral Movement  -  SMB/Windows Admin Shares     -    T1021.002

Lateral Movement   -  Taint Shared Content          -            T1080

Execution   - PowerShell     - T1059.001

Execution  -   Service Execution   -    T1059.002

Impact   -    Data Encrypted for Impact  -  T1486

References

[1] https://unit42.paloaltonetworks.com/medusa-ransomware-escalation-new-leak-site/

[2] https://thehackernews.com/2024/01/medusa-ransomware-on-rise-from-data.html

[3] https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/unveiling-the-latest-ransomware-threats-targeting-the-casino-and-entertainment-industry/

[4] https://www.sangfor.com/farsight-labs-threat-intelligence/cybersecurity/security-advisory-for-medusa-ransomware

[5] https://thehackernews.com/2024/01/medusa-ransomware-on-rise-from-data.html

[6]https://any.run/report/8be3304fec9d41d44012213ddbb28980d2570edeef3523b909af2f97768a8d85/e4c54c9d-12fd-477f-8cbb-a20f8fb98912

Continue reading
About the author
Maria Geronikolou
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.