Blog
/
Network
/
March 20, 2025

Cyberhaven Supply Chain Attack: Exploiting Browser Extensions

In late 2024, Darktrace detected unusual activity linked to Cyberhaven's Chrome browser extension. Read more about Darktrace’s investigation here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst
woman looking at laptop in the office buildingDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Mar 2025

The evolution of supply chain attacks

Supply chain attacks are becoming increasingly sophisticated. As network defenses improve, threat actors continuously adapt and refine their tactics, techniques, and procedures (TTPs) to achieve their goals. In recent years, this has led to a rise in the exploitation of trusted services and software, including legitimate browser extensions. Exploitation of these extensions can provide adversaries with a stealthy means to infiltrate target networks and access high-value accounts undetected.

A notable example of this trend was the compromise of the Cyberhaven Chrome extension at the end of 2024. This incident appeared to be part of a broader campaign targeting multiple Chrome browser extensions, highlighting the evolving nature of supply chain attacks [1].

What is Cyberhaven?

Cyberhaven, a US-based data security organization, experienced a security breach on December 24, 2024, when a phishing attack reportedly compromised one of their employee's credentials [2]. This allowed attackers to publish a malicious version of the Cyberhaven Chrome extension, which exfiltrated cookies and authenticated sessions from targeted websites. The malicious extension was active from December 25 to December 26 – a time when most businesses and employees were out of office and enjoying the festive period, a fact not lost on threat actors. The attackers, likely a well-organized and financially motivated group, compromised more than 30 additional Chrome extensions, affecting more than 2.6 million users [3]. They used sophisticated phishing techniques to authorize malicious OAuth applications, bypassing traditional security measures and exploiting vulnerabilities in OAuth authorizations. The primary motive appeared to be financial gain, targeting high-value platforms like social media advertising and AI services [4].

In late December 2024, multiple Darktrace customers were compromised via the Cyberhaven Chrome extension; this blog will primarily focus on Darktrace / NETWORK detections from one affected customer.

Darktrace’s coverage of Cyberhaven compromises

On December 26, 2024, Darktrace identified a series of suspicious activities across multiple customer environments, uncovering a structured attack sequence that progressed from initial intrusion to privilege escalation and data exfiltration. The attack was distributed through a malicious update to the Cyberhaven Chrome extension [2]. The malicious update established a foothold in customer environments almost immediately, leading to further anomalies.

As with other Chrome browser extensions, Cyberhaven Chrome extensions were updated automatically with no user interaction required. However, in this instance, the automatic update included a malicious version which was deployed to customer environments. This almost immediately introduced unauthorized activity, allowing attackers to establish a foothold in customer networks. The update allowed attackers to execute their objectives in the background, undetected by traditional security tools that rely on known indicators of compromise (IoCS) rather than identifying anomalies.

While multiple customer devices were seen connecting to cyberhaven[.]io, a legitimate Cyberhaven domain, Darktrace detected persistent beaconing behavior to cyberhavenext[.]pro, which appeared to be attempting to masquerade as another legitimate Cyberhaven domain. Darktrace recognized this activity as unusual, triggering several model alerts in Darktrace / NETWORK to highlight the persistent outbound connections to the suspicious domain.

Further analysis of external connectivity patterns indicated  an increase in anomalous HTTP requests alongside this beaconing activity. Multiple open-source intelligence (OSINT) sources also suggest that the cyberhavenext[.]pro endpoint is associated with malicious activities [5].

Darktrace / NETWORK’s detection of beaconing activity to cyberhavenext[.]pro
Figure 1: Darktrace / NETWORK’s detection of beaconing activity to cyberhavenext[.]pro

Analysis using Darktrace’s Advanced Search revealed that some of these connections were directed to the suspicious external IP address 149.28.124[.]84. Further investigation confirmed that the IP correlated with two SSL hostnames, including the malicious cyberhavenext[.]pro, further reinforcing its connection to the attack infrastructure.

Darktrace Advanced Search analysis showing the IP address 149.28.124[.]84 correlating to two SSL hostnames, one of which is cyberhavenext[.]pro.
Figure 2: Darktrace Advanced Search analysis showing the IP address 149.28.124[.]84 correlating to two SSL hostnames, one of which is cyberhavenext[.]pro.

Between December 23 and December 27, Darktrace observed sustained beaconing-like activity from affected devices on the customer’s network.

Darktrace’s detection of beaconing activities from a customer device to the endpoint 149.28.124[.]84 between December 23 and December 27.
Figure 3: Darktrace’s detection of beaconing activities from a customer device to the endpoint 149.28.124[.]84 between December 23 and December 27.

Darktrace observed 27 unique devices connecting to the malicious command-and-control (C2) infrastructure as far back as December 3. While most connections were brief, they represented an entry point for malicious activity. Over a two-day period, two devices transmitted 5.57 GiB of incoming data and 859.37 MiB of outgoing data, generating over 3 million log events across SSL, HTTP, and connection data.

Subsequent analysis identified a significant increase in unauthorized data transfers to the aforementioned 149.28.124[.]84 IP on another customer network, highlighting the potential broader impact of this compromise. The volume and frequency of these transfers suggested that attackers were leveraging automated data collection techniques, further underscoring the sophistication of the attack.

Darktrace’s detection of the likely exfiltration of 859.37 MiB to the endpoint 149.28.124[.]84.
Figure 4: Darktrace’s detection of the likely exfiltration of 859.37 MiB to the endpoint 149.28.124[.]84.

External research suggested that once active, the Cyberhaven extension would begin silently collecting session cookies and authentication tokens, specifically targeting high-value accounts such as Facebook Ads accounts [4]. Darktrace’s analysis of another affected customer noted many HTTP POST connections directed to a specific URI ("ai-cyberhaven"), while GET requests contained varying URIs prefixed with "/php/urlblock?args=AAAh....--redirect." This activity indicated an exfiltration mechanism, consistent with techniques observed in other compromised Chrome extensions. By compromising session cookies, attackers could potentially gain administrative access to connected accounts, further escalating their privileges [4].

Conclusion

This incident highlights the importance of monitoring not just endpoint security, but also cloud and browser-based security solutions, as attackers increasingly target these trusted and oft overlooked vectors.

Ultimately, by focusing on anomaly detection and behavioral analysis rather than static signatures and lists of ‘known bads’, Darktrace was able to successfully detect devices affected by the Cyberhaven Chrome browser extension compromise, by identifying activity that would likely have been considered legitimate and benign by traditional security solutions.

This compromise also serves as a reminder that supply chain attacks are not limited to traditional software vendors. Browser extensions, cloud-based applications, and SaaS services are equally vulnerable, as evidenced by Darktrace's detection of Balada Injector malware exploiting WordPress vulnerabilities to gain unauthorized network access [6]. Therefore, increased targeting of browser-based security tools, and a greater exploitation of OAuth and session hijacking techniques are to be expected. Attackers will undoubtedly refine their methods to infiltrate legitimate vendors and distribute malicious updates through trusted channels. By staying informed, vigilant, and proactive, organizations can mitigate exposure to evolving supply chain threats and safeguard their critical assets from emerging browser-based attack techniques.

Credit to Rajendra Rushanth (Cyber Analyst) Justin Torres (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

[related-resource]

Appendices

Darktrace Model Detections

·       Compromise / Beaconing Activity To External Rare (AP: C2 Comms)

·       Compromise / Beacon for 4 Days (AP: C2 Comms)

·       Compromise / HTTP Beaconing to Rare Destination (AP: C2 Comms)

·       Device / Suspicious Domain (AP: C2 Comms, AP: Tooling)

·       Compromise / Sustained TCP Beaconing Activity To Rare Endpoint (AP: C2 Comms)

·       Anomalous Server Activity / Rare External from Server (AP: C2 Comms)

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint (AP: C2 Comms)

·       Anomalous Server Activity / Anomalous External Activity from Critical Network Device (AP: C2 Comms)

·       Compromise / Slow Beaconing Activity To External Rare (AP: C2 Comms)

·       Compromise / Repeating Connections Over 4 Days (AP: C2 Comms)

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname (AP: C2 Comms)

·       Anomalous Server Activity / Outgoing from Server (AP: C2 Comms)

·       Compromise / High Volume of Connections with Beacon Score (AP: C2 Comms)

·       Compromise / Large Number of Suspicious Failed Connections (AP: C2 Comms)

·       Email Nexus / Connection to Hijacked Correspondent Link

·       Compromise / Suspicious TLS Beaconing To Rare External (AP: C2 Comms)

·       Compromise / Quick and Regular Windows HTTP Beaconing (AP: C2 Comms)

List of IoCs

IoC - Type - Description + Confidence

cyberhavenext[.]pro - Hostname - Used for C2 communications and data exfiltration (cookies and session tokens)

149.28.124[.]84 - IP - Associated with malicious infrastructure

45.76.225[.]148 - IP - Associated with malicious infrastructure

136.244.115[.]219 - IP - Associated with malicious infrastructure

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

INITIAL ACCESS - T1176 - Browser Extensions

EXECUTION - T1204.002 - Malicious Browser Extensions

PERSISTENCE - T1176 - Browser Extensions

COMMAND AND CONTROL - T1071.001 - Web Protocols

COMMAND AND CONTROL - T1001 - Data Obfuscation

CREDENTIAL ACCESS - T1539 - Steal Web Session Cookie

DISCOVERY - T1518.001 - Security Software Discovery

LATERAL MOVEMENT - T1557.003 - Man-in-the-Browser

EXFILTRATION - T1041 - Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 - Exfiltration to Cloud Storage

IMPACT - T1583.006 - Session Hijacking

References

[1] https://thehackernews.com/2024/12/16-chrome-extensions-hacked-exposing.html

[2] https://www.cyberhaven.com/blog/cyberhavens-chrome-extension-security-incident-and-what-were-doing-about-it

[3] https://www.infosecurity-magazine.com/news/chrome-browser-extensions-hijacked/

[4] https://www.theverge.com/2024/12/28/24330758/chrome-extension-cyberhaven-hijack-phishing-cyberattack-facebook-ads-authentication-theft

[5] https://www.virustotal.com/gui/domain/cyberhavenext.pro

[6] https://darktrace.com/blog/balada-injector-darktraces-investigation-into-the-malware-exploiting-wordpress-vulnerabilities

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

June 5, 2025

Unpacking ClickFix: Darktrace’s detection of a prolific social engineering tactic

Woman on laptop in office buildingDefault blog imageDefault blog image

What is ClickFix and how does it work?

Amid heightened security awareness, threat actors continue to seek stealthy methods to infiltrate target networks, often finding the human end user to be the most vulnerable and easily exploited entry point.

ClickFix baiting is an exploitation of the end user, making use of social engineering techniques masquerading as error messages or routine verification processes, that can result in malicious code execution.

Since March 2024, the simplicity of this technique has drawn attention from a range of threat actors, from individual cybercriminals to Advanced Persistent Threat (APT) groups such as APT28 and MuddyWater, linked to Russia and Iran respectively, introducing security threats on a broader scale [1]. ClickFix campaigns have been observed affecting organizations in across multiple industries, including healthcare, hospitality, automotive and government [2][3].

Actors carrying out these targeted attacks typically utilize similar techniques, tools and procedures (TTPs) to gain initial access. These include spear phishing attacks, drive-by compromises, or exploiting trust in familiar online platforms, such as GitHub, to deliver malicious payloads [2][3]. Often, a hidden link within an email or malvertisements on compromised legitimate websites redirect the end user to a malicious URL [4]. These take the form of ‘Fix It’ or fake CAPTCHA prompts [4].

From there, users are misled into believing they are completing a human verification step, registering a device, or fixing a non-existent issue such as a webpage display error. As a result, they are guided through a three-step process that ultimately enables the execution of malicious PowerShell commands:

  1. Open a Windows Run dialog box [press Windows Key + R]
  2. Automatically or manually copy and paste a malicious PowerShell command into the terminal [press CTRL+V]
  3. And run the prompt [press ‘Enter’] [2]

Once the malicious PowerShell command is executed, threat actors then establish command and control (C2) communication within the targeted environment before moving laterally through the network with the intent of obtaining and stealing sensitive data [4]. Malicious payloads associated with various malware families, such as XWorm, Lumma, and AsyncRAT, are often deployed [2][3].

Attack timeline of ClickFix cyber attack

Based on investigations conducted by Darktrace’s Threat Research team in early 2025, this blog highlights Darktrace’s capability to detect ClickFix baiting activity following initial access.

Darktrace’s coverage of a ClickFix attack chain

Darktrace identified multiple ClickFix attacks across customer environments in both Europe, the Middle East, and Africa (EMEA) and the United States. The following incident details a specific attack on a customer network that occurred on April 9, 2025.

Although the initial access phase of this specific attack occurred outside Darktrace’s visibility, other affected networks showed compromise beginning with phishing emails or fake CAPTCHA prompts that led users to execute malicious PowerShell commands.

Darktrace’s visibility into the compromise began when the threat actor initiated external communication with their C2 infrastructure, with Darktrace / NETWORK detecting the use of a new PowerShell user agent, indicating an attempt at remote code execution.

Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.
Figure 1: Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.

Download of Malicious Files for Lateral Movement

A few minutes later, the compromised device was observed downloading a numerically named file. Numeric files like this are often intentionally nondescript and associated with malware. In this case, the file name adhered to a specific pattern, matching the regular expression: /174(\d){7}/. Further investigation into the file revealed that it contained additional malicious code designed to further exploit remote services and gather device information.

Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.
Figure 2: Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.

The file contained a script that sent system information to a specified IP address using an HTTP POST request, which also processed the response. This process was verified through packet capture (PCAP) analysis conducted by the Darktrace Threat Research team.

By analyzing the body content of the HTTP GET request, it was observed that the command converts the current time to Unix epoch time format (i.e., 9 April 2025 13:26:40 GMT), resulting in an additional numeric file observed in the URI: /1744205200.

PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.
Figure 3: PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.

Across Darktrace’s investigations into other customers' affected by ClickFix campaigns, both internal information discovery events and further execution of malicious code were observed.

Data Exfiltration

By following the HTTP stream in the same PCAP, the Darktrace Threat Research Team assessed the activity as indicative of data exfiltration involving system and device information to the same command-and-control (C2) endpoint, , 193.36.38[.]237. This endpoint was flagged as malicious by multiple open-source intelligence (OSINT) vendors [5].

PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.
Figure 4: PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.

Further analysis of Darktrace’s Advanced Search logs showed that the attacker’s malicious code scanned for internal system information, which was then sent to a C2 server via an HTTP POST request, indicating data exfiltration

Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.
Figure 5: Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.

Actions on objectives

Around ten minutes after the initial C2 communications, the compromised device was observed connecting to an additional rare endpoint, 188.34.195[.]44. Further analysis of this endpoint confirmed its association with ClickFix campaigns, with several OSINT vendors linking it to previously reported attacks [6].

In the final HTTP POST request made by the device, Darktrace detected a file at the URI /init1234 in the connection logs to the malicious endpoint 188.34.195[.]44, likely depicting the successful completion of the attack’s objective, automated data egress to a ClickFix C2 server.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the compromised device and triggered an Enhanced Monitoring model alert, a high-priority detection model designed to identify activity indicative of the early stages of an attack. These models are monitored and triaged 24/7 by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection service, ensuring customers are promptly notified of malicious activity as soon as it emerges.

Darktrace correlated the separate malicious connections that pertained to a single campaign.
Figure 6: Darktrace correlated the separate malicious connections that pertained to a single campaign.

Darktrace Autonomous Response

In the incident outlined above, Darktrace was not configured in Autonomous Response mode. As a result, while actions to block specific connections were suggested, they had to be manually implemented by the customer’s security team. Due to the speed of the attack, this need for manual intervention allowed the threat to escalate without interruption.

However, in a different example, Autonomous Response was fully enabled, allowing Darktrace to immediately block connections to the malicious endpoint (138.199.156[.]22) just one second after the initial connection in which a numerically named file was downloaded [7].

Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.
Figure 7: Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.

This customer was also subscribed to our Managed Detection and Response service, Darktrace’s SOC extended a ‘Quarantine Device’ action that had already been autonomously applied in order to buy their security team additional time for remediation.

Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.
Figure 8: Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.

Conclusion

ClickFix baiting is a widely used tactic in which threat actors exploit human error to bypass security defenses. By tricking end point users into performing seemingly harmless, everyday actions, attackers gain initial access to systems where they can access and exfiltrate sensitive data.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace detects subtle deviations that may signal a compromise. In this case, Darktrace's Autonomous Response, when operating in a fully autonomous mode, was able to swiftly contain the threat before it could progress further along the attack lifecycle.

Credit to Keanna Grelicha (Cyber Analyst) and Jennifer Beckett (Cyber Analyst)

Appendices

NETWORK Models

  • Device / New PowerShell User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Device / Suspicious Domain
  • Device / New User Agent and New IP
  • Anomalous File / New User Agent Followed By Numeric File Download (Enhanced Monitoring Model)
  • Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

Autonomous Response Models

  • Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block
  • Antigena / Network::External Threat::Antigena File then New Outbound Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block
  • Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block

IoC - Type - Description + Confidence

·       141.193.213[.]11 – IP address – Possible C2 Infrastructure

·       141.193.213[.]10 – IP address – Possible C2 Infrastructure

·       64.94.84[.]217 – IP address – Possible C2 Infrastructure

·       138.199.156[.]22 – IP address – C2 server

·       94.181.229[.]250 – IP address – Possible C2 Infrastructure

·       216.245.184[.]181 – IP address – Possible C2 Infrastructure

·       212.237.217[.]182 – IP address – Possible C2 Infrastructure

·       168.119.96[.]41 – IP address – Possible C2 Infrastructure

·       193.36.38[.]237 – IP address – C2 server

·       188.34.195[.]44 – IP address – C2 server

·       205.196.186[.]70 – IP address – Possible C2 Infrastructure

·       rkuagqnmnypetvf[.]top – Hostname – C2 server

·       shorturl[.]at/UB6E6 – Hostname – Possible C2 Infrastructure

·       tlgrm-redirect[.]icu – Hostname – Possible C2 Infrastructure

·       diagnostics.medgenome[.]com – Hostname – Compromised Website

·       /1741714208 – URI – Possible malicious file

·       /1741718928 – URI – Possible malicious file

·       /1743871488 – URI – Possible malicious file

·       /1741200416 – URI – Possible malicious file

·       /1741356624 – URI – Possible malicious file

·       /ttt – URI – Possible malicious file

·       /1741965536 – URI – Possible malicious file

·       /1.txt – URI – Possible malicious file

·       /1744205184 – URI – Possible malicious file

·       /1744139920 – URI – Possible malicious file

·       /1744134352 – URI – Possible malicious file

·       /1744125600 – URI – Possible malicious file

·       /1[.]php?s=527 – URI – Possible malicious file

·       34ff2f72c191434ce5f20ebc1a7e823794ac69bba9df70721829d66e7196b044 – SHA-256 Hash – Possible malicious file

·       10a5eab3eef36e75bd3139fe3a3c760f54be33e3 – SHA-1 Hash – Possible malicious file

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Spearphishing Link - INITIAL ACCESS - T1566.002 - T1566

Drive-by Compromise - INITIAL ACCESS - T1189

PowerShell - EXECUTION - T1059.001 - T1059

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Automated Exfiltration - EXFILTRATION - T1020 - T1020.001

References

[1] https://www.logpoint.com/en/blog/emerging-threats/clickfix-another-deceptive-social-engineering-technique/

[2] https://www.proofpoint.com/us/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[3] https://cyberresilience.com/threatonomics/understanding-the-clickfix-attack/

[4] https://www.group-ib.com/blog/clickfix-the-social-engineering-technique-hackers-use-to-manipulate-victims/

[5] https://www.virustotal.com/gui/ip-address/193.36.38.237/detection

[6] https://www.virustotal.com/gui/ip-address/188.34.195.44/community

[7] https://www.virustotal.com/gui/ip-address/138.199.156.22/detection

Continue reading
About the author
Keanna Grelicha
Cyber Analyst

Blog

/

Proactive Security

/

June 4, 2025

Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Man on computer doing workDefault blog imageDefault blog image

Introducing Exploit Prediction Assessment

Security teams are drowning in vulnerability alerts, but only a fraction of those issues pose a real threat. The new Exploit Prediction Assessment feature in Darktrace / Attack Surface Management helps teams cut through the noise by validating which vulnerabilities on their external attack surface can be actively exploited.

Instead of relying solely on CVSS scores or waiting for patch cycles, Exploit Prediction Assessment uses safe, targeted simulations to test whether exposed systems can be compromised, delivering fast, evidence-based results in under 72 hours.

This capability augments traditional pen testing and complements existing ASM workflows by transforming passive discovery into actionable insight. With EPA, security teams move from reacting to long lists of potential vulnerabilities to making confident, risk-based decisions on what actually matters.

Key highlights of Exploit Prediction Assessment

Simulated attacks to validate real risk

Exploit Prediction Assessment conducts safe, simulated attacks on assets with potential security vulnerabilities that have been identified by Darktrace / Attack Surface Management. This real-time testing validates your systems' susceptibility to compromise by confirming which vulnerabilities are present and exploitable on your attack surface.

Prioritize what matters most

Confirmed security risks can be prioritized for mitigation, ensuring that the most critical threats are promptly addressed. This takes the existing letter ranking system and brings it a step further by drilling down to yet another level. Even in the most overwhelming situations, teams will be able to act on a pragmatic, clear-cut plan.

Fast results, tailored to your environment

Customers set the scope of the Exploit Prediction Assessment within Darktrace / Attack Surface Management and receive the results of the surgical vulnerability testing within 72 hours. Users will see 1 of 2 shields:

1. A green shield with a check mark: Meaning no vulnerabilities were found on scanned CVEs for the asset.

2. A red shield with a red x: Meaning at least one vulnerability was found on scanned CVEs for the asset.

Why it's a game changer

Traditionally, attack surface management tools have focused on identifying exposed assets and vulnerabilities but lacked the context to determine which issues posed the greatest risk. Without context on what’s exploitable, security teams are left triaging long lists of potential risks, operating in isolation from broader business objectives. This misalignment ultimately leads to both weakened risk posture and cross team communication and execution.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM is a framework that helps organizations continuously assess, validate, and improve their exposure to real-world threats. The goal isn’t just visibility, it’s to understand how an attacker could move through your environment today, and what to fix first to stop them.

Exploit Prediction Assessment brings this philosophy to life within Darktrace / Attack Surface Management. By safely simulating exploit attempts against identified vulnerabilities, it validates which exposures are truly at risk—transforming ASM from a discovery tool into a risk-based decision engine.

This capability directly supports the validation and prioritization phases of CTEM, helping teams focus on exploitable vulnerabilities rather than theoretical ones.  This shift from visibility to action reduces the risk of critical vulnerabilities in the technology stack being overlooked, turning overwhelming vulnerability data into focused, clear actionable insights.

As attack surfaces continue to grow and change, organizations need more than static scans they need continuous, contextual insight. Exploit Prediction Assessment ensures your ASM efforts evolve with the threat landscape, making CTEM a practical reality, not just a strategy.

Exploit Prediction Assessment in action

With Darktrace / Attack Surface Management organizations can get Exploit Prediction Assessment, and the cyber risk team no longer guesses which vulnerabilities matter most. Instead, they identify several externally exposed areas of their attack surface, then use the feature to surgically test for exploitability across these exposed endpoints. Within 72 hours, they receive a report:  

Positive outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it cannot be abused.

Negative outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it can be exploited, so we can predict it being exploited.

This second outcome changes everything. The team immediately prioritizes the exploitable asset for patching and takes the necessary adjustments to mitigate exposure until the fix is deployed.

Instead of spreading their resources thin across dozens of alerts, they focus on what poses a real threat, saving time, reducing risk, and demonstrating actionable results to stakeholders.

Conclusion

Exploit Predication Assessment bolsters Darktrace’s commitment to proactive cybersecurity. It supports intelligent prioritization of vulnerabilities, keeping organizations ahead of emerging threats. With this new addition to / Attack Surface Management, teams have another tool to empower a more efficient approach to addressing security gaps in real-time.

Stay tuned for more updates and insights on how Darktrace continues to develop a culture of proactive security across the entire ActiveAI Security Platform.

[related-resource]

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI