Blog
/
Cloud
/
April 8, 2025

Cloud Security Evolution: Why Security Teams are Taking the Lead

While many internal teams contribute to general cloud hygiene, the security team has increasingly taken the lead on cloud security. Learn how AI-powered cloud detection and response tools can help these teams with new responsibilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
person on computer cybersecurityDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Apr 2025

Cloud adoption is rapidly on the rise. Gartner estimates that 90% of organizations will adopt hybrid clouds through 2027 [1].  

There are many reasons why organizations are migrating on-premises infrastructure to the cloud. It can increase the speed and scale of computing resources, improve reliability and resilience, and save time by outsourcing the spinning up, patching, and updating of infrastructure.  

However, despite these benefits, it is complex to secure. Public clouds operate with a shared responsibility model, meaning that while the Cloud Service Provider (CSP) maintains the physical infrastructure and services, customer organizations are responsible for their own security and compliance in their cloud deployments.  

This customer responsibility is crucial. Gartner forecasted that through 2025, 99% of cloud security failures would be the customer’s fault [2]. As cloud environments grow, security teams are taking on a greater share of the responsibility to protect these assets.

The many teams involved in cloud security

Several teams work across the cloud, and all of them can contribute to cloud security. For example, basic cyber-hygiene and Identity and Access Management (IAM) should be practiced across teams.  

Not every organization has the same categorization of teams, but some common ones include:

  • Security: assessing and mitigating vulnerabilities, risks, and threats. This team must be ready to identify, investigate, respond, and recover from incidents.
  • Infrastructure and ITOps: deploying and maintaining resources. Security must be considered across all layers of the cloud, including gateways, identity, encryption, and attack surface.
  • Research & development: building cloud-based applications. Security must be baked into code, referenced data, access, APIs, and third-party integrations.
  • DevOps: improving the software development process. Security must be applied to code across the development and production stages.
  • Compliance: adhering to industry standards and frameworks. Security often comes up in compliance regulations.  
  • End users: working in the cloud. Security must be taught through employee training sessions to adopt best practices and increase resistance against threats like phishing or data loss.

Traditionally, many organizations left cloud security to dedicated cloud teams. However, it is becoming more and more common for security teams to take on the responsibilities of securing the cloud. This is also true of organizations undergoing cloud migration and spinning up cloud infrastructure for the first time.

The complexity of cloud security

Most organizations using the cloud today have hybrid and/or multi-cloud deployments. Hybrid deployments combine public and private cloud environments and multi-cloud deployments use a combination of public cloud providers or regions where servers are stored. In fact, Deloitte reports that as many as 85% of businesses, a vast majority, use two or more cloud platforms, and 25% use at least five [3].

While these diverse deployments can boost resiliency, they also complicate security. Multiple environments increase the attack surface and reduce architectural visibility, making misconfigurations, unmanaged access, and inconsistent policies more likely. This complexity creates gaps in security that often require specialized teams and expert personnel to address.  

Challenges driving security teams’ responsibility

The usual approaches to other types of cybersecurity can’t be applied the exact same way to the cloud. With the inherent dynamism and flexibility of the cloud, the necessary security mindset differs greatly from those for networks or data centers, with which security teams may be more familiar.

For example, IAM is both critical and distinct to cloud computing, and the associated policies, rules, and downstream impacts require intentional care. IAM rules not only govern people, but also non-human entities like service accounts, API keys, and OAuth tokens. These considerations are unique to cloud security, and established teams may need to learn new skills to reduce security gaps in the cloud.

Additionally, there are greater compliance pressures from GDPR, CCPA, and industry-specific regulations. While some companies have dedicated compliance teams, not every organization does and others are not always familiar with working in cloud environments. In these cases, responsibilities may fall to the security team.  

Finally, there has been a rise in sophisticated, cloud-based threats, such as account takeovers and misconfigurations. Preparing, responding to, and recovering from these cloud-specific threats lie with the security team as well.  

Learn more about the top risks and attacks faced in the cloud in the white paper: “Tackling the 11 Biggest Cloud Threats with AI-Powered Defense.

Solutions empowering security teams

The leading role of security teams in cloud security can put a strain on existing resources as well as exacerbate skills gaps. In response, security teams can turn to AI-powered tools like Darktrace / CLOUD to provide real-time detection and response in cloud environments.  

Darktrace uses multi-layered AI to learn normal ‘patterns of life’ for all users, technologies, and resources across the organization, enabling it to recognize the subtlest anomalies that point to an emerging threat.  

The use of AI allows for automation that reduces manual workloads and saves teams time. The self-learning capabilities also help the human team detect subtle indicators that can be hard to spot amid the immense noise of legitimate, day-to-day digital interactions.

With these, Darktrace can respond to both known and novel threats, helping security teams keep pace with today’s sophisticated threats, even if team members feel less confident in cloud environments.  

Crucially, Darktrace / CLOUD can enable proactive risk management as well. Attack Path Modeling for the cloud identifies exposed assets and highlights internal attack paths to give a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace / CLOUD dynamically adjusts its focus based on evolving risks, analyzing misconfigurations, and anomalous activity to prevent potential attacks. Its Entitlement Enumeration capability helps security teams gain visibility into all identities, roles, and permissions, allowing dynamic adjustments to stop insider threats and lateral movement.

In these ways, the AI-powered Darktrace / CLOUD can support security teams as they take on the lion’s share of responsibility in securing the cloud, regardless of any resource limitations or skills gaps.

Conclusion

Cloud security is both vital under the shared responsibility model and complex with hybrid and multi-cloud deployments and strict regulatory demands. While many teams contribute to cloud security, more and more responsibilities are shifting to security teams specifically.

AI-powered solutions that can detect and respond to threats spanning a wide range of risks and attack types can support security teams as they protect dynamic cloud environments. By adopting real-time cloud detection and response tools, security teams have more time to dedicate to proactive projects and high-level tasks as well as reduced burden on less specialized team members.  

Discover how advanced AI solutions like Darktrace / CLOUD can address evolving cloud security needs in the solution brief.  

Read more about the latest trends in cloud security in the blog “Protecting Your Hybrid Cloud: The Future of Cloud Security in 2025 and Beyond.”

References:

1. Gartner, November 19, 2024, “Cloud End-User Spending to Total $723 Billion in 2025”  

2. Gartner, October 10, 2019, “Is the Cloud Secure?

3. Deloitte, December 6, 2022, “Above the clouds: Taming multicloud chaos”  

Protect Your Hybrid Cloud

Discover how advanced AI solutions like Darktrace / CLOUD can address evolving cloud security needs in this solution brief

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

More in this series

No items found.

Blog

/

/

April 15, 2025

Why Data Classification Isn’t Enough to Prevent Data Loss

women looking at laptopDefault blog imageDefault blog image

Why today’s data is fundamentally difficult to protect

Data isn’t what it used to be. It’s no longer confined to neat rows in a database, or tucked away in a secure on-prem server. Today, sensitive information moves freely between cloud platforms, SaaS applications, endpoints, and a globally distributed workforce – often in real time. The sheer volume and diversity of modern data make it inherently harder to monitor, classify, and secure. And the numbers reflect this challenge – 63% of breaches stem from malicious insiders or human error.

This complexity is compounded by an outdated reliance on manual data management. While data classification remains critical – particularly to ensure compliance with regulations like GDPR or HIPAA – the burden of managing this data often falls on overstretched security teams. Security teams are expected to identify, label, and track data across sprawling ecosystems, which can be time-consuming and error-prone. Even with automation, rigid policies that depend on pre-defined data classification miss the mark.

From a data protection perspective, if manual or basic automated classification is the sole methodology for preventing data loss, critical data will likely slip through the cracks. Security teams are left scrambling to fill the gaps, facing compliance risks and increasing operational overhead. Over time, the hidden costs of these inefficiencies pile up, draining resources and reducing the effectiveness of your entire security posture.

What traditional data classification can’t cover

Data classification plays an important role in data loss prevention, but it's only half the puzzle. It’s designed to spot known patterns and apply labels, yet the most common causes of data breaches don’t follow rules. They stem from something far harder to define: human behavior.

When Darktrace began developing its data loss detection capabilities, the question wasn’t what data to protect — it was how to understand the people using it. The numbers pointed clearly to where AI could make the biggest difference: 22% of email data breaches stem directly from user error, while malicious insider threats remain the most expensive, costing organizations an average of $4.99 million per incident.

Data classification is blind to nuance – it can’t grasp intent, context, or the subtle red flags that often precede a breach. And no amount of labeling, policy, or training can fully account for the reality that humans make mistakes. These problems require a system that sees beyond the data itself — one that understands how it’s being used, by whom, and in what context. That’s why Darktrace leans into its core strength: detecting the subtle symptoms of data loss by interpreting human behavior, not just file labels.

Achieving autonomous data protection with behavioral AI

Rather than relying on manual processes to understand what’s important, Darktrace uses its industry-leading AI to learn how your organization uses data — and spot when something looks wrong.

Its understanding of business operations allows it to detect subtle anomalies around data movement for your use cases, whether that’s a misdirected email, an insecure cloud storage link, or suspicious activity from an insider. Crucially, this detection is entirely autonomous, with no need for predefined rules or static labels.

Darktrace uses its contextual understanding of each user to stop all types of sensitive or misdirected data from leaving the organization
Fig 1: Darktrace uses its contextual understanding of each user to stop all types of sensitive or misdirected data from leaving the organization

Darktrace / EMAIL’s DLP add-on continuously learns in real time, enabling

  • Automatic detection: Identifies risky data behavior to catch threats that traditional approaches miss – from human error to sophisticated insider threats.
  • A dynamic range of actions: Darktrace always aims to avoid business disruption in its blocking actions, but this can be adjusted according to the unique risk appetite of each customer – taking the most appropriate response for that business from a whole scale of possibilities.
  • Enhanced context: While Darktrace doesn’t require sensitivity data labeling, it integrates with Microsoft Purview to ingest sensitivity labels and enrich its understanding of the data – for even more accurate decision-making.

Beyond preventing data loss, Darktrace uses DLP activity to enhance its contextual understanding of the user itself. In other words, outbound activity can be a useful symptom in identifying a potential account compromise, or can be used to give context to that user’s inbound activity. Because Darktrace sees the whole picture of a user across their inbound, outbound, and lateral mail, as well as messaging (and into collaboration tools with Darktrace / IDENTITY), every interaction informs its continuous learning of normal.

With Darktrace, you can achieve dynamic data loss prevention for the most challenging human-related use cases – from accidental misdirected recipients to malicious insiders – that evade detection from manual classification. So don’t stand still on data protection – make the switch to autonomous, adaptive DLP that understands your business, data, and people.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

April 14, 2025

Email bombing exposed: Darktrace’s email defense in action

picture of a computer screen showing a password loginDefault blog imageDefault blog image

What is email bombing?

An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.

How does email bombing work?

Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.

In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].

Multiple threat actors have been observed utilizing this tactic, including the Ransomware-as-a-Service (RaaS) group Black Basta, also known as Storm-1811 [1] [2].

Darktrace detection of email bombing attack

In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.

The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.

Email bombing attack overview

In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.

Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.

The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.

Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.

 Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.

While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.

Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.

Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.

Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.

The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).

Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.

Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.

Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.

The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.

Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.

While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.

Conclusion

Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.

Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.

Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)

Appendices

[1] https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

[2] https://thehackernews.com/2024/12/black-basta-ransomware-evolves-with.html

Darktrace Models Alerts

Internal Reconnaissance

·      Device / Suspicious SMB Scanning Activity

·      Device / Anonymous NTLM Logins

·      Device / Network Scan

·      Device / Network Range Scan

·      Device / Suspicious Network Scan Activity

·      Device / ICMP Address Scan

·      Anomalous Connection / Large Volume of LDAP Download

·      Device / Suspicious LDAP Search Operation

·      Device / Large Number of Model Alerts

Continue reading
About the author
Maria Geronikolou
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI