Blog
/
AI
/
March 7, 2024

Defending Against the New Normal in Cybercrime: AI

This blog outlines research & data points on the evolving threat landscape, the impact of malicious AI, and why proactive cyber readiness is essential.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Mar 2024

AI in Cyber Security

Over the last 18 months, discussions about artificial intelligence (AI) – specifically generative AI – ranged from excitement and optimism about its transformative potential to fear and uncertainty about the new risks it introduces.  

New research1 commissioned by Darktrace shows that 89 percent of IT security teams polled globally believe AI-augmented cyber threats will have a significant impact on their organization within the next two years, yet 60 percent believe they are currently unprepared to defend against these attacks. Their concerns include increased volume and sophistication of malware that targets known vulnerabilities and increased exposure of sensitive or proprietary information from using generative AI tools.  

At Darktrace, we monitor trends across our global customer base to understand how the challenges facing security teams are evolving alongside industry advancements in AI. We’ve observed that AI, automation, and cybercrime-as-a-service have increased the speed, sophistication and efficacy of cyber security attacks.  

How AI Impacts Phishing Attempts

Darktrace has observed immediate impacts on phishing, which remains one of the most common forms of attack. In April 2023, Darktrace shared research that found a 135 percent increase in ‘novel social engineering attacks’ in the first two months of 2023, corresponding with the widespread adoption of ChatGPT2. These phishing attacks showed a strong linguistic deviation – semantically and syntactically – compared to other phishing emails, which suggested to us that generative AI is providing an avenue for threat actors to craft sophisticated and targeted attacks at speed and scale. A year later, we’ve seen this trend continue. Darktrace customers received approximately 2,867,000 phishing emails in December 2023 alone, a 14 percent increase on what was observed months prior in September3. Between September and December 2023, phishing attacks that used novel social engineering techniques grew by 35 percent on average across the Darktrace customer base4.  

These observations reinforce trends that others in the industry have shared. For example, Microsoft and OpenAI recently published research on tactics, techniques, and procedures (TTPs) augmented by large language models (LLMs) that they have observed nation-state threat actors using. That includes using LLMs to draft and generate social engineering attacks, inform reconnaissance, assist with vulnerability research and more.  

The Rise of Cybercrime-as-as-a-Service

The increasing cyber challenge facing defenders cannot be attributed to AI alone. The rise of cybercrime as-a-service is also changing the dynamic. Darktrace’s 2023 End of Year Threat Report found that cybercrime-as-a-service continue to dominate the threat landscape, with malware-as-a-Service (MaaS) and ransomware-as-a-Service (RaaS) tools making up most malicious tools in use by attackers. The as-a-Service ecosystem can provide attackers with everything from pre-made malware to templates for phishing emails, payment processing systems and even helplines to enable bad actors to mount attacks with limited technical knowledge.  

These trends make it clear that attackers now have a more widely accessible toolbox that reduces their barriers.

AI Enabling Accidental Insider Threats

However, the new risks facing businesses aren’t from external threat actors alone. Use of generative AI tools within the enterprise introduces a new category of accidental insider threats. Employees using generative AI tools now have easier access to more organizational data than ever before. Even the most well-intentioned employee could unintentionally leak or access restricted, sensitive data via these tools. In the second half of 2023, we observed that approximately half of Darktrace customers had employees accessing generative AI services. As this continues to increase, organizations need policies in place to guide the use cases for generative AI tools as well as strong data governance and the ability to enforce these policies to minimize risk.  

It is inevitable that AI will increase the risks and threats facing an organization, but this is not an unsolvable challenge from a defensive perspective. While advancements in generative AI may be worsening issues like novel social engineering and creating new types of accidental insider threats, AI itself offers a strong defense.  

The Shift to Proactive Cyber Readiness

According to the World Economic Forum’s Global Cybersecurity Outlook 2024, the number of organizations that “maintain minimum viable cyber resilience is down 30 percent compared to 2023”, and “while large organizations have demonstrated gains in cyber resilience, small and medium-sized companies showed significant decline.” The importance of cyber resilience cannot be understated in the face of today’s increasingly as-a-service, automated, and AI-augmented threat landscape.  

Historically, organizations wait for incidents to happen and rely on known attack data for threat detection and response, making it nearly impossible to identify never-before-seen threats. The traditional security stack has also relied heavily on point solutions focused on protecting different pieces of the digital environment, with individual tools for endpoint, email, network, on-premises data centers, SaaS applications, cloud, OT and beyond. These point solutions fail to correlate disparate incidents to form a complete picture of an orchestrated attack. Even with the addition of tools that can stitch together events from across the enterprise, they are in a reactive state that focuses heavily on threat detection and response.  

Organizations need to evolve from a reactive posture to a stance of proactive cyber readiness. To do so, they need an approach that proactively identifies internal and external vulnerabilities, identifies gaps in security policy and process before an attack occurs, breaks down silos to investigate all threats (known and unknown) during an attack, and uplifts the human analyst beyond menial tasks to incident validation and recovery after an attack.  

AI can help break down silos within the SOC and provide a more proactive approach to scale up and augment defenders. It provides richer context when it is fed information from multiple systems, data sets, and tools within the stack and can build an in-depth, real-time behavioural understanding of a business that humans alone cannot.

Lessons From AI in the SOC

At Darktrace, we’ve been applying AI to the challenge of cyber security for more than ten years, and we know that proactive cyber readiness requires the right mix of people, process, and technology.  

When the right AI is applied responsibly to the right cyber security challenge, the impact on both the human security team and the business is profound.

AI can bring machine speed and scale to some of the most time-intensive, error-prone, and psychologically draining components of cyber security, helping humans focus on the value-added work that only they can provide. Incident response and continuous monitoring are two areas where AI has already been proven to effectively augment defenders. For example, a civil engineering company used Darktrace’s AI to uplift its SOC team from the repetitive, manual tasks of analyzing and responding to email incidents. The analysts estimated they were each spending 10 hours per week on email incident analysis. With AI autonomously analyzing and responding to email incidents, the analysts could gain approximately 20 percent of their time back to focus on proactive cyber security measures

An effective human-AI partnership is key to proactive cyber readiness and can directly benefit the work-life of defenders. It can help to reduce burnout, support data-driven decision-making, and reduce the reliance on hard-to-find, specialized talent that has created a skills shortage in cyber security for many years. Most importantly, AI can free up team members to focus on more meaningful tasks, such as compliance initiatives, user education, and sophisticated threat hunting.  

Advancements in AI are happening at a rapid pace. As we’ve already observed, attackers will be watching these developments and looking for ways to use it to their advantage. Luckily, AI has already proved to be an asset for defenders, and embracing a proactive approach to cyber resilience can help organizations increase their readiness for this next phase. Prioritizing cyber security will be an enabler of innovation and progress as AI development continues.  

--

Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings.

References

[1] The survey was undertaken by AimPoint Group & Dynata on behalf Darktrace between December 2023 & January 2024. The research polled 1773 security professionals in positions across the security team from junior roles to CISOs, across 14 countries – Australia, Brazil, France, Germany, Italy, Japan, Mexico, Netherlands, Singapore, Spain, Sweden, UAE, UK, and USA.

[2] Based on the average change in email attacks between January and February 2023 detected across Darktrace/Email deployments with control of outliers.

[3] Average calculated across Darktrace customers from 31st August to 21st December.

[4] Average calculated across Darktrace customers from 31st August to 21st December. Novel social engineering attacks use linguistic techniques that are different to techniques used in the past, as measured by a combination of semantics, phrasing, text volume, punctuation, and sentence length.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI