Defending Against the New Normal in Cybercrime: AI
07
Mar 2024
This blog outlines research & data points on the evolving threat landscape, the impact of malicious AI, and why proactive cyber readiness is essential.
AI in Cyber Security
Over the last 18 months, discussions about artificial intelligence (AI) – specifically generative AI – ranged from excitement and optimism about its transformative potential to fear and uncertainty about the new risks it introduces.
New research1 commissioned by Darktrace shows that 89 percent of IT security teams polled globally believe AI-augmented cyber threats will have a significant impact on their organization within the next two years, yet 60 percent believe they are currently unprepared to defend against these attacks. Their concerns include increased volume and sophistication of malware that targets known vulnerabilities and increased exposure of sensitive or proprietary information from using generative AI tools.
At Darktrace, we monitor trends across our global customer base to understand how the challenges facing security teams are evolving alongside industry advancements in AI. We’ve observed that AI, automation, and cybercrime-as-a-service have increased the speed, sophistication and efficacy of cyber security attacks.
How AI Impacts Phishing Attempts
Darktrace has observed immediate impacts on phishing, which remains one of the most common forms of attack. In April 2023, Darktrace shared research that found a 135 percent increase in ‘novel social engineering attacks’ in the first two months of 2023, corresponding with the widespread adoption of ChatGPT2. These phishing attacks showed a strong linguistic deviation – semantically and syntactically – compared to other phishing emails, which suggested to us that generative AI is providing an avenue for threat actors to craft sophisticated and targeted attacks at speed and scale. A year later, we’ve seen this trend continue. Darktrace customers received approximately 2,867,000 phishing emails in December 2023 alone, a 14 percent increase on what was observed months prior in September3. Between September and December 2023, phishing attacks that used novel social engineering techniques grew by 35 percent on average across the Darktrace customer base4.
These observations reinforce trends that others in the industry have shared. For example, Microsoft and OpenAI recently published research on tactics, techniques, and procedures (TTPs) augmented by large language models (LLMs) that they have observed nation-state threat actors using. That includes using LLMs to draft and generate social engineering attacks, inform reconnaissance, assist with vulnerability research and more.
The Rise of Cybercrime-as-as-a-Service
The increasing cyber challenge facing defenders cannot be attributed to AI alone. The rise of cybercrime as-a-service is also changing the dynamic. Darktrace’s 2023 End of Year Threat Report found that cybercrime-as-a-service continue to dominate the threat landscape, with malware-as-a-Service (MaaS) and ransomware-as-a-Service (RaaS) tools making up most malicious tools in use by attackers. The as-a-Service ecosystem can provide attackers with everything from pre-made malware to templates for phishing emails, payment processing systems and even helplines to enable bad actors to mount attacks with limited technical knowledge.
These trends make it clear that attackers now have a more widely accessible toolbox that reduces their barriers.
AI Enabling Accidental Insider Threats
However, the new risks facing businesses aren’t from external threat actors alone. Use of generative AI tools within the enterprise introduces a new category of accidental insider threats. Employees using generative AI tools now have easier access to more organizational data than ever before. Even the most well-intentioned employee could unintentionally leak or access restricted, sensitive data via these tools. In the second half of 2023, we observed that approximately half of Darktrace customers had employees accessing generative AI services. As this continues to increase, organizations need policies in place to guide the use cases for generative AI tools as well as strong data governance and the ability to enforce these policies to minimize risk.
It is inevitable that AI will increase the risks and threats facing an organization, but this is not an unsolvable challenge from a defensive perspective. While advancements in generative AI may be worsening issues like novel social engineering and creating new types of accidental insider threats, AI itself offers a strong defense.
The Shift to Proactive Cyber Readiness
According to the World Economic Forum’s Global Cybersecurity Outlook 2024, the number of organizations that “maintain minimum viable cyber resilience is down 30 percent compared to 2023”, and “while large organizations have demonstrated gains in cyber resilience, small and medium-sized companies showed significant decline.” The importance of cyber resilience cannot be understated in the face of today’s increasingly as-a-service, automated, and AI-augmented threat landscape.
Historically, organizations wait for incidents to happen and rely on known attack data for threat detection and response, making it nearly impossible to identify never-before-seen threats. The traditional security stack has also relied heavily on point solutions focused on protecting different pieces of the digital environment, with individual tools for endpoint, email, network, on-premises data centers, SaaS applications, cloud, OT and beyond. These point solutions fail to correlate disparate incidents to form a complete picture of an orchestrated attack. Even with the addition of tools that can stitch together events from across the enterprise, they are in a reactive state that focuses heavily on threat detection and response.
Organizations need to evolve from a reactive posture to a stance of proactive cyber readiness. To do so, they need an approach that proactively identifies internal and external vulnerabilities, identifies gaps in security policy and process before an attack occurs, breaks down silos to investigate all threats (known and unknown) during an attack, and uplifts the human analyst beyond menial tasks to incident validation and recovery after an attack.
AI can help break down silos within the SOC and provide a more proactive approach to scale up and augment defenders. It provides richer context when it is fed information from multiple systems, data sets, and tools within the stack and can build an in-depth, real-time behavioural understanding of a business that humans alone cannot.
Lessons From AI in the SOC
At Darktrace, we’ve been applying AI to the challenge of cyber security for more than ten years, and we know that proactive cyber readiness requires the right mix of people, process, and technology.
When the right AI is applied responsibly to the right cyber security challenge, the impact on both the human security team and the business is profound.
AI can bring machine speed and scale to some of the most time-intensive, error-prone, and psychologically draining components of cyber security, helping humans focus on the value-added work that only they can provide. Incident response and continuous monitoring are two areas where AI has already been proven to effectively augment defenders. For example, a civil engineering company used Darktrace’s AI to uplift its SOC team from the repetitive, manual tasks of analyzing and responding to email incidents. The analysts estimated they were each spending 10 hours per week on email incident analysis. With AI autonomously analyzing and responding to email incidents, the analysts could gain approximately 20 percent of their time back to focus on proactive cyber security measures
An effective human-AI partnership is key to proactive cyber readiness and can directly benefit the work-life of defenders. It can help to reduce burnout, support data-driven decision-making, and reduce the reliance on hard-to-find, specialized talent that has created a skills shortage in cyber security for many years. Most importantly, AI can free up team members to focus on more meaningful tasks, such as compliance initiatives, user education, and sophisticated threat hunting.
Advancements in AI are happening at a rapid pace. As we’ve already observed, attackers will be watching these developments and looking for ways to use it to their advantage. Luckily, AI has already proved to be an asset for defenders, and embracing a proactive approach to cyber resilience can help organizations increase their readiness for this next phase. Prioritizing cyber security will be an enabler of innovation and progress as AI development continues.
--
Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings.
References
[1] The survey was undertaken by AimPoint Group & Dynata on behalf Darktrace between December 2023 & January 2024. The research polled 1773 security professionals in positions across the security team from junior roles to CISOs, across 14 countries – Australia, Brazil, France, Germany, Italy, Japan, Mexico, Netherlands, Singapore, Spain, Sweden, UAE, UK, and USA.
[2] Based on the average change in email attacks between January and February 2023 detected across Darktrace/Email deployments with control of outliers.
[3] Average calculated across Darktrace customers from 31st August to 21st December.
[4] Average calculated across Darktrace customers from 31st August to 21st December. Novel social engineering attacks use linguistic techniques that are different to techniques used in the past, as measured by a combination of semantics, phrasing, text volume, punctuation, and sentence length.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Chief Product Officer
Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.
Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)
Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices
As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.
More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.
Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.
How did exploitation occur?
CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”. Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].
CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.
Post-Exploitation Patterns of Activity
Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:
Exploit validation and initial payload retrieval
Command and control (C2) connectivity, potentially featuring further binary downloads
Potential reconnaissance and cryptomining activity
Exploit Validation
Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.
Initial Payload Retrieval
Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.
In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.
While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.
The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.
While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP 38.180.147[.]18.
Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].
Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.
These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].
C2 Communication and Additional Payloads
Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.
Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.
These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliverand Gzip formatting.
For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.
External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.
Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.
Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.
Reconnaissance and Cryptomining
Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.
Conclusion
Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.
Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.
Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.
Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.
Cloud Security: Addressing Common CISO Challenges with Advanced Solutions
Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.
1. Misconfigurations: The Silent Saboteur
Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80% of data breaches involved data stored in the cloud.1 Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.
How Darktrace / CLOUD Helps:
Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.
2. Hybrid Environments: The Migration Maze
Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.
How Darktrace / CLOUD Helps:
Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.
This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.
3. Securing Productivity Suites: The Last Mile
Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.
How Darktrace helps:
Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:
• Unusual file accesses
• Anomalous login attempts from unexpected locations or devices.
• Suspicious email forwarding rules created by compromised accounts.
Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.
4. Agent Fatigue: The Visibility Struggle
To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.
How Darktrace / CLOUD Helps:
Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.
So why Darktrace / CLOUD?
Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.
From Chaos to Clarity
Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.