Understand the methods ransomware gangs use to exploit security compliance and how Darktrace's AI can mitigate these threats.
Compliance regulations like CCPA and GDPR are created with good intentions. They aim to secure user data, ensure privacy, and build trust between the companies and consumers. However, these regulations have become a double-edged sword for many organizations.
One reason for this is the rise of double extortion ransomware, where data is exfiltrated before files are encrypted. In this scenario, threat actors threaten to release sensitive company information online if the ransom is not paid. Companies can face hefty fines if they fail to comply with regulation, and thus they are pressured into paying the ransom just to keep the breach quiet.
Consequences of non-compliance
Today’s businesses face a range of demanding privacy regulations that are frequently being updated. This includes General Data Protection Regulation, or GDPR, the California Consumer Privacy Act, or CCPA, and regulations from the New York State Department Of Financial Services, or NYDFS.
With the shift to remote and dynamic working, and the ever-increasing complexity of business operations, there has been great pressure for companies to upgrade infrastructure and ensure that they are meeting all regulations.
Non-compliance can lead to significant financial penalties and drawn-out legal actions. If organizations fail to protect their data, the fees can be disastrous. GDPR can fine companies up to €20 million, or 4% of a company’s annual global turnover. For example, since 2017, Google has been fined a combined total of $9.5 billion by EU regulators.
Weaponization of compliance
Ultimately, compliance serves the important purpose of giving citizens more control and rights over their data. However, cyber-criminals have realized that they can use the threat of non-compliance as a pressure point against organizations. Stolen data, if released to the public, can lead to huge regulatory fines.
We have seen this phenomenon in double extortion ransomware attacks, where threat actors steal sensitive data before they encrypt the files. Moreover, several ransomware actors, such as the Babuk gang, now have begun to forsake encryption in favor of extortion. This is because threat actors realize that exfiltration is more effective when many organizations continually back up files as a precaution against the threat of ransomware locking down files.
Ransomware actors often auction intellectual property, customer data, and company secrets on the Dark Web. The Maze ransomware group established this trend back when it created a website in late 2019 to publicly ‘name and shame’ organizations that had been compromised. These attacks included theft of information such as stolen PDF files, in addition to IP addresses and device names which were then uploaded and made publicly available on its website.
Over 70% of ransomware attacks now involve exfiltration.
The tactic was made infamous by the cyber-criminal group REvil, who publicly announced their intentions on a Russian hacker forum in December 2019:
“Each attack is accompanied by a copy of commercial information. In case of refusal of payment, the data will either be sold to competitors or laid out in open sources. GDPR. Do not want to pay us – pay x10 more to the government. No problems.”
In these cases, threat actors are essentially saying, ‘if you pay us this small ransom, we will keep your data safe. If you don’t pay us, we have the power to release your data, and then you can take your chances with a huge compliance fine.’
Organizations may prefer to negotiate with cyber-criminals and keep the breach – or threat of breach – quiet. This is what the ransomware attackers are banking on.
How AI can help: Stopping ransomware and strengthening compliance
Compliance fines are not cheap. It took over three years of legal proceedings for Equifax to settle their 2017 data breach. They finally settled with paying $700 million to regulators, including the Federal Trade Commission and the Consumer Financial Protection Bureau (CFPB). Home Depot and Uber have also famously faced financial penalties of hundreds of millions of dollars.
These regulatory fines are compounding the potential consequences of ransomware. The continued ability of attackers to adapt and find new weaknesses means that it is crucial for companies to identify and contain ransomware in its earliest stages, with machine speed and precision.
Darktrace’s AI has achieved this repeatedly, such as when a WastedLocker intrusion was stopped before the ransomware was deployed. By constantly evolving its understanding of the organization, Cyber AI detects and automatically investigates all unusual activity across the enterprise and can respond autonomously in real time to stop threats in their tracks.
Figure 1: Darktrace’s customizable CCPA tags allow for specialized alerting on activity related to personal data as defined by CCPA
Furthermore, Darktrace’s technology can be used to action specific types of alerts based on different compliance threat models. For instance, businesses seeking to ensure compliance with CCPA requirements can use a specific ‘CCPA Tag’ for certain devices which have, or are likely to have, consumer data subject to the CCPA. When relevant data from the tagged devices leaves the environment or is involved in any abnormal activity, Darktrace’s AI detects this immediately and automatically launches an investigation into the incident.
With a proven ability to protect against machine-speed threats, and the ability to strengthen compliance with customizable alerts, the Darktrace Immune System platform provides a powerful defense against double extortion ransomware.
Under pressure
Compliance is just one of the many strategic concerns facing ransomware victims. In addition to customer trust, valuable IP, and long-term reputation, attackers and defenders are in a constant ‘cat and mouse’ game, such that threat actors will continue to seek out new pressure points to extort their targets.
Figure 2: Current varieties of double extortion ransomware
Organizations accordingly will benefit from using sophisticated technologies that neutralize ransomware before it has encrypted or exfiltrated files, stopping advanced threats in their earliest stages.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Bytesize Security: Insider Threats in Google Workspace
What is an insider threat?
An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.
Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.
For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.
Attack overview: Insider threat
In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.
While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.
Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.
In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.
Conclusion
Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.
Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.
Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
Darktrace Model Detections
SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File
RansomHub Ransomware: investigación de Darktrace sobre la herramienta más nueva en ShadowSyndicate's Arsenal
What is ShadowSyndicate?
ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].
What is RansomHub?
First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].
ShadowSyndicate and RansomHub
External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].
Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].
In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.
Darktrace’s coverage of ShadowSyndicate and RansomHub
Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.
Attack Overview
Internal Reconnaissance
The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.
C2 Communication and Data Exfiltration
In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.
Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.
Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.
Lateral Movement
In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.
The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.
Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.
File Encryption
Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.
Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.
In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.
Conclusion
The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.
For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.
Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)