Blog
/
/
December 13, 2023

Defending Against Personalized Cyber Attacks

Stay informed about the latest trends in cyber threats with Darktrace experts, including how attacks are evolving and becoming more personalized.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Dec 2023

Cyber-attacks are getting personal. The usual opportunistic “spray and pray” attacks that reach many would-be targets at once are still present, but as cyber defence has advanced, today’s more sophisticated campaigns take precise aim at a particular company.

Threat actors willingly put in extra time and effort to realize a bigger payday at the end of it, but developments in the tools they have at their disposal are also making targeted, personal attacks easier.

CAPTCHA-breaking AI techniques like computer vision and convolutional neural networks can be used to gather information on an organization’s attack surface, and Generative AI is able to perform OSINT collection on a specific target, or targets, within an organization. Once inside, attackers can further leverage AI to automatically tweak attacks and create novel, highly targeted threats that elude defenses.

A new white paper, The CISO’s Guide to Cyber AI, explains how CISOs and their teams can make smarter use of defensive AI and machine learning (ML) to protect today’s digital environments from these and more advanced novel threats.

Today’s threats don’t necessarily resemble past attacks  

Darktrace analytics pointed to a sharp rise in novel cyber-attacks earlier this year. Generative AI and large language model (LLM) tools continue to lower the barrier to entry for threat actors, making it easier than ever to build smarter, faster, more targeted attacks.

But while attacks are getting personal, security tools that apply AI in the wrong way won’t see these attacks coming.

Here’s why: most cyber security tools and platforms rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

At its conception, this was a reasonably smart way of approaching cyber security. For a long time, the assumption that today’s threats will resemble yesterday’s attacks was a valid one. But in an age where the commoditization of cyber-crime has lowered the bar-to-entry for attackers, and where Generative AI and other open-source tools are enabling personalized attacks at scale, this is no longer the case.

Darktrace has seen evidence this year of a marked rise in more sophisticated attack techniques. Between May and July this year, our Cyber AI Research Centre observed that multistage payload attacks, in which a malicious email encourages the recipient to follow a series of steps before delivering a payload or attempting to harvest sensitive information, have increased by an average of 59% across Darktrace customers. Some of this will be QR code phishing, the latest trend in attack tactics, others will include automation. The speed of these types of attacks will likely rise as greater automation and AI are adopted and applied by attackers.

This ‘historical’ approach is not able to identify threats that haven’t been seen before: attacks that use new malware, novel social engineering, and those that are targeted to your organization. There are no indicators of compromise (IoCs) to teach your system to recognize these kinds of attacks.

IoC-based defenses won’t necessarily spot strange and unusual activity by an authorized user, device, or known IP address until threat actors tip their hand — and by then it’s too late. Looking for repeat patterns works well for detecting threats that resemble past attacks, but this increasingly won’t be the case. The only way to spot unique and novel threats is to build cyber security that’s tailored to you, and that requires a whole new approach.

Smarter use of AI levels the playing field

Security teams and adversaries continue to innovate to gain the upper-hand, and the advantage of time.

Since AI equips even novice cyber criminals to mount sophisticated attacks, AI must evolve to do three things:

  • Understand and continue to learn what “normal” looks like for your unique digital environment
  • Detect and alert on any anomalous behavior the instant it occurs
  • Initiate a targeted response to contain threats and give your analysts more time, without disrupting the flow of business

Darktrace uses Self-Learning AI to understand what constitutes ‘normal’ for everyone and everything in your business, including cloud resources, identities, email accounts, endpoint devices, and even OT controllers. As the name suggests, Self-Learning AI trains itself, developing and maintaining deep understanding of ‘patterns of life’ for your business environment. Used in combination with other AI methods such as LLMs, generative AI, and supervised ML, Self-Learning AI identifies novel cyber-threats most static (backward-looking) tools miss.

The technology learns ‘on the job’ and from scratch, without relying on historical data or a massive upfront effort by your team to train the system. Probabilistic mathematics revise assumptions about behavior on a constant basis so the system keeps itself up-to-date without repeat efforts by your team.

The result is that areas of risk, as well as real-time emerging attacks, are brought to the surface – regardless of whether those attacks have been seen before in the wild.

Surgical attacks warrant surgical response

Supervised ML continues to serve a purpose, but the dawning age of novel and AI-led attacks favors a more proactive approach to securing the cloud. Tools must take greater responsibility for their own education and greater initiative via autonomous response.

What some solutions call response ultimately amounts to sending alerts and opening tickets that create more needless work for analysts. Other tools claim to automate response, but either take very limited actions like automating the process of ticket creation, or overly ambitious steps like quarantining entire systems.

Darktrace’s dynamic understanding of your environment enables a truly autonomous and precise cloud-native response. Its understanding of ‘normal’ for every user and device allows it to enforce ‘normal’ – cutting out only the malicious activity, while allowing normal business to continue functioning.

How this response will take place will depend on where Darktrace is deployed in your environment. In the network, it might mean blocking specific, anomalous connections over a certain port. In the cloud, it could mean detaching EC2 instances and applying security groups to contain only assets at risk. In email, this could be locking links or flattening attachments.

Get personal with ‘One on One’ Security

The widespread accessibility of generative AI has altered the threat landscape permanently, allowing cyber-criminals to deploy unique and personalized attacks at scale and at machine speed. In the near future, we can expect to see more novel and sophisticated phishing attacks, new automated creation of malicious code, sustained attack campaigns targeting an individual or company, and even deep fakes designed to elicit human trust.

To meet the needs of today and tomorrow, cyber security needs to leverage AI deeply and intelligently – not just using it to automate outdated historical approaches, or bolting generative AI onto existing products to keep up with the latest trend. Since 2013 Darktrace has been using AI in a fundamentally unique way: a system that learns your unique organization and understands what’s normal at a granular level. Only with this personalized understanding can you be confident in your ability as an organization to identify and shut down novel threats on the first encounter.

This form of personalized, ‘One on One’ security is a no longer a ‘nice to have’ for defenders. ‘Spray and pray’ tactics will continue to exist, but the attacks most likely to slip through the net and cause you damage are the sophisticated, the personal, and the never-before-seen. That’s what Self-Learning AI was built for – learning your business to deliver personalized cyber security, meeting every attack one-on-one.

The CISO’s Guide to Cyber AI overviews the differences between common AI approaches in cyber security and offers a high-level checklist for choosing the ideal solution for stopping attacks — including new novel threats.  To learn more about making the smartest use of AI to stop novel and targeted cloud attacks, download the guide today.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI