Blog
/
/
December 13, 2023

Defending Against Personalized Cyber Attacks

Stay informed about the latest trends in cyber threats with Darktrace experts, including how attacks are evolving and becoming more personalized.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Dec 2023

Cyber-attacks are getting personal. The usual opportunistic “spray and pray” attacks that reach many would-be targets at once are still present, but as cyber defence has advanced, today’s more sophisticated campaigns take precise aim at a particular company.

Threat actors willingly put in extra time and effort to realize a bigger payday at the end of it, but developments in the tools they have at their disposal are also making targeted, personal attacks easier.

CAPTCHA-breaking AI techniques like computer vision and convolutional neural networks can be used to gather information on an organization’s attack surface, and Generative AI is able to perform OSINT collection on a specific target, or targets, within an organization. Once inside, attackers can further leverage AI to automatically tweak attacks and create novel, highly targeted threats that elude defenses.

A new white paper, The CISO’s Guide to Cyber AI, explains how CISOs and their teams can make smarter use of defensive AI and machine learning (ML) to protect today’s digital environments from these and more advanced novel threats.

Today’s threats don’t necessarily resemble past attacks  

Darktrace analytics pointed to a sharp rise in novel cyber-attacks earlier this year. Generative AI and large language model (LLM) tools continue to lower the barrier to entry for threat actors, making it easier than ever to build smarter, faster, more targeted attacks.

But while attacks are getting personal, security tools that apply AI in the wrong way won’t see these attacks coming.

Here’s why: most cyber security tools and platforms rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

At its conception, this was a reasonably smart way of approaching cyber security. For a long time, the assumption that today’s threats will resemble yesterday’s attacks was a valid one. But in an age where the commoditization of cyber-crime has lowered the bar-to-entry for attackers, and where Generative AI and other open-source tools are enabling personalized attacks at scale, this is no longer the case.

Darktrace has seen evidence this year of a marked rise in more sophisticated attack techniques. Between May and July this year, our Cyber AI Research Centre observed that multistage payload attacks, in which a malicious email encourages the recipient to follow a series of steps before delivering a payload or attempting to harvest sensitive information, have increased by an average of 59% across Darktrace customers. Some of this will be QR code phishing, the latest trend in attack tactics, others will include automation. The speed of these types of attacks will likely rise as greater automation and AI are adopted and applied by attackers.

This ‘historical’ approach is not able to identify threats that haven’t been seen before: attacks that use new malware, novel social engineering, and those that are targeted to your organization. There are no indicators of compromise (IoCs) to teach your system to recognize these kinds of attacks.

IoC-based defenses won’t necessarily spot strange and unusual activity by an authorized user, device, or known IP address until threat actors tip their hand — and by then it’s too late. Looking for repeat patterns works well for detecting threats that resemble past attacks, but this increasingly won’t be the case. The only way to spot unique and novel threats is to build cyber security that’s tailored to you, and that requires a whole new approach.

Smarter use of AI levels the playing field

Security teams and adversaries continue to innovate to gain the upper-hand, and the advantage of time.

Since AI equips even novice cyber criminals to mount sophisticated attacks, AI must evolve to do three things:

  • Understand and continue to learn what “normal” looks like for your unique digital environment
  • Detect and alert on any anomalous behavior the instant it occurs
  • Initiate a targeted response to contain threats and give your analysts more time, without disrupting the flow of business

Darktrace uses Self-Learning AI to understand what constitutes ‘normal’ for everyone and everything in your business, including cloud resources, identities, email accounts, endpoint devices, and even OT controllers. As the name suggests, Self-Learning AI trains itself, developing and maintaining deep understanding of ‘patterns of life’ for your business environment. Used in combination with other AI methods such as LLMs, generative AI, and supervised ML, Self-Learning AI identifies novel cyber-threats most static (backward-looking) tools miss.

The technology learns ‘on the job’ and from scratch, without relying on historical data or a massive upfront effort by your team to train the system. Probabilistic mathematics revise assumptions about behavior on a constant basis so the system keeps itself up-to-date without repeat efforts by your team.

The result is that areas of risk, as well as real-time emerging attacks, are brought to the surface – regardless of whether those attacks have been seen before in the wild.

Surgical attacks warrant surgical response

Supervised ML continues to serve a purpose, but the dawning age of novel and AI-led attacks favors a more proactive approach to securing the cloud. Tools must take greater responsibility for their own education and greater initiative via autonomous response.

What some solutions call response ultimately amounts to sending alerts and opening tickets that create more needless work for analysts. Other tools claim to automate response, but either take very limited actions like automating the process of ticket creation, or overly ambitious steps like quarantining entire systems.

Darktrace’s dynamic understanding of your environment enables a truly autonomous and precise cloud-native response. Its understanding of ‘normal’ for every user and device allows it to enforce ‘normal’ – cutting out only the malicious activity, while allowing normal business to continue functioning.

How this response will take place will depend on where Darktrace is deployed in your environment. In the network, it might mean blocking specific, anomalous connections over a certain port. In the cloud, it could mean detaching EC2 instances and applying security groups to contain only assets at risk. In email, this could be locking links or flattening attachments.

Get personal with ‘One on One’ Security

The widespread accessibility of generative AI has altered the threat landscape permanently, allowing cyber-criminals to deploy unique and personalized attacks at scale and at machine speed. In the near future, we can expect to see more novel and sophisticated phishing attacks, new automated creation of malicious code, sustained attack campaigns targeting an individual or company, and even deep fakes designed to elicit human trust.

To meet the needs of today and tomorrow, cyber security needs to leverage AI deeply and intelligently – not just using it to automate outdated historical approaches, or bolting generative AI onto existing products to keep up with the latest trend. Since 2013 Darktrace has been using AI in a fundamentally unique way: a system that learns your unique organization and understands what’s normal at a granular level. Only with this personalized understanding can you be confident in your ability as an organization to identify and shut down novel threats on the first encounter.

This form of personalized, ‘One on One’ security is a no longer a ‘nice to have’ for defenders. ‘Spray and pray’ tactics will continue to exist, but the attacks most likely to slip through the net and cause you damage are the sophisticated, the personal, and the never-before-seen. That’s what Self-Learning AI was built for – learning your business to deliver personalized cyber security, meeting every attack one-on-one.

The CISO’s Guide to Cyber AI overviews the differences between common AI approaches in cyber security and offers a high-level checklist for choosing the ideal solution for stopping attacks — including new novel threats.  To learn more about making the smartest use of AI to stop novel and targeted cloud attacks, download the guide today.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI