Blog

No items found.

Resurgence of the Feodo banking Trojan on a government network

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Oct 2017
01
Oct 2017
AI detects new Feodo banking Trojan on a government network

Famous malware like Zeus, Conficker, and CryptoLocker are still some of the most common threats globally. By repurposing and repackaging known threats like these, attackers can create unknown variants that bypass signature-based security tools.

For instance, an older class of banking Trojans – known as Feodo – recently cropped up again on the network of a local US government. However, this particular strain had a key differentiator.

Darktrace detected the malware when it first was downloaded onto the government’s network. After analysis, the malware was found to be consistent with two well-documented Trojans in the Feodo family: Dridex and Emotet.

Traditionally, Trojans in the Feodo family will infect just a single device, but this attack immediately began propagating on the network, spreading to over 200 devices in a matter of hours.

The incident is part of an emerging trend of similar infections, suggesting that the Feodo family of Trojans is undergoing a resurgence, but this time retooled with ability to rapidly spread across the network.

Darktrace first detected the threat when an internal device made a series of anomalous SSL connections to IPs with self-signed certificates. The abnormal connections were a deviation from what Darktrace’s AI algorithms had learned to be normal, triggering Darktrace to raise the first in a series of alerts.

Time: 2017-04-26 11:38:05 [UTC]
Source: 172.16.14.39
Destination: 76.164.161.46
Destination Port: 995
Protocol: SSL
Version: TLSv12 [Considered HIGH security]
Cipher: TLS_RSA_WI TH_AES_256_ GCM_SHA384 [Considered HIGH security]
UID: CbenK822ViUMxJok00

The identical IP certificate subject and issuer:
Subject: CN=euwtrdjuee.biz,OU=Tslspyqh Dfxdekt Brftapckwr,O=Kaqt Aooscr LLC.,street=132 Vfjteuadivm Fklhnxdmza.,L=Elqazgap Nvax,ST=XI,C=PO
Issuer: CN=euwtrdjuee.biz,OU=Tslspyqh Dfxdekt Brftapckwr,O=Kaqt Aooscr LLC.,street=132 Vfjteuadivm Fklhnxdmza.,L=Elqazgap Nvax,ST=XI,C=PO

The device proceeded to download an anomalous ZIP file from an unusual external server. The email purported to be a notification from FedEx, and the file was disguised as an attachment containing tracking numbers. The download was nearly identical to the malicious files usually seen in Dridex and Emotet infections.

Time: 2017-04-28 16:01:03 [UTC]
Source: 172.16.14.39
Destination: 89.38.128.232
Destination Port: 80/tcp
Protocol: HTTP
Path: hxxp://XX[.]ro/UPS__Ship__Notification__Tracking__Number__2SM099383266006810/Y0894C/FEDEX-TRACK/track-tracknumbers-673639733202/
Filename: fedex-track-tracknumbers-133977976498-language-en.zip
Mime Type: application/zip

After downloading the ZIP, the device wrote an executable file to a second device via SMB. This strongly suggested that the infection was spreading, and quickly.

Time: 2017-04-28 16:52:57 [UTC]
Source: 172.16.14.39
Destination: 172.16.10.41
Destination Port: 445/tcp
Protocol: SMB
Action: write
Filename: tptzfqa.exe
Path: \\PU12881\C$
Write Size: 65536
UID: Cxq64s3tCi1vq4Uo00

The graph shows the internal connectivity of the initial device. The spike in activity, which includes numerous alerts due to unusual behavior, occurs immediately following the SMB write made by the original device.

Devices across the network started to mimic this activity by performing the same type of SMB write, each time with the same amount of data – 65536B – and a random string of characters followed by the .exe filetype.

Meanwhile, the initial device was flagged for making a large number of SMB and Kerberos login attempts. At this point, the infection had spread to over 200 devices, which were all attempting to bruteforce passwords using the same credentials as the original device, in addition to standard usernames like ‘Administrator’ and ‘misadmin’.

Bruteforcing over SMB is consistent with lateral movement seen in recent instances of Emotet, in which the Trojan was seen with new, built-in functionality designed for network propagation.

As the malware continued to spread in the government network, devices began making anomalous SSL connections without SNI (Server Name Indication).

This series of anomalies represented a massive deviation from the network’s normal ‘pattern of life’, causing the Enterprise Immune System to raise three high-priority alerts in real time: one alert for the SMB session bruteforce, another for the Kerberos activity, and another for the anomalous SSL connections without SNI.

The final anomaly occurred when devices made a flurry of unusual DNS requests for DGA-generated domains, often involving rare TLDs such as .biz and .info. The DNS requests illustrate a sophisticated method to disguise communications to the attacker’s command and control centers. Darktrace’s AI algorithms deemed this domain fluxing activity to be highly unusual compared to ordinary behavior, thus raising one final alert before the security team was able to intervene.

A sample of the DNS requests:

15:33:00 hd12530.mi.SALTEDHAZE.org made a successful DNS request for rbqfkjjemttqumeobxb.org to dc1-2012.mi.[REDACTED].org
15:33:10 hd12530.mi.SALTEDHAZE.org made a successful DNS request for tmmiqtsdnkjdcqr.biz to dc1-2012.mi.SALTEDHAZE.org
15:33:20 hd12530.mi.SALTEDHAZE.org made a successful DNS request for mehqdlodsgggehchxdwfsmmoq.biz to dc1-2012.mi.SALTEDHAZE.org

Taken on their own, each of these anomalies could be explained as an isolated incident or perhaps a false-positive. But taken together, they form a broader picture of a widespread and aggressive infection, in which an external hacker had taken control of over 200 devices and was using them to attempt to harvest the users’ banking credentials and transfer funds into their own account.

In accordance with the Feodo family of banking Trojans, the malware was likely attempting to steal banking credentials by intercepting web form submissions. Yet, by adding the ability to spread through the network, the attacker was able to create a completely novel attack type that circumvented the perimeter security controls and infected over 200 devices.

As the threat progressed, the Enterprise Immune System raised real-time alerts and revealed in-depth details on the nature of the compromise. Using this information, the government’s security team was able to remediate the situation before any banking credentials could be stolen.

To learn more about the threats Darktrace finds, check out our Threat Use Cases page which discusses a host of other novel infections that were stopped by the Enterprise Immune System.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Andrew Tsonchev
VP of Technology

Andrew is a technical expert on cyber security and advises Darktrace’s strategic customers on advanced threat defense, AI and autonomous response. He has a background in threat analysis and research, and holds a first-class degree in physics from Oxford University and a first-class degree in philosophy from King’s College London. His comments on cyber security and the threat to critical national infrastructure have been reported in international media, including CNBC and the BBC World.

Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Gootloader Malware: Detecting and Containing Multi-Functional Threats with Darktrace

Default blog imageDefault blog image
15
Feb 2024

What is multi-functional malware?

While traditional malware variants were designed with one specific objective in mind, the emergence of multi-functional malware, such as loader malware, means that organizations are likely to be confronted with multiple malicious tools and strains of malware at once. These threats often have non-linear attack patterns and kill chains that can quickly adapt and progress quicker than human security teams are able to react. Therefore, it is more important than ever for organizations to adopt an anomaly approach to combat increasingly versatile and fast-moving threats.

Example of Multi-functional malware

One example of a multi-functional malware recently observed by Darktrace can be seen in Gootloader, a multi-payload loader variant that has been observed in the wild since 2020. It is known to primarily target Windows-based systems across multiple industries in the US, Canada, France, Germany, and South Korea [1].  

How does Gootloader malware work?

Once installed on a target network, Gootloader can download additional malicious payloads that allow threat actors to carry out a range of harmful activities, such as stealing sensitive information or encrypting files for ransom.

The Gootloader malware is known to infect networks via search engine optimization (SEO) poisoning, directing users searching for legitimate documents to compromised websites hosting a malicious payload masquerading as the desired file.

If the malware remains undetected, it paves the way for a second stage payload known as Gootkit, which functions as a banking trojan and information-stealer, or other malware tools including Cobalt Strike and Osiris [2].

Darktrace detection of Gootloader malware

In late 2023, Darktrace observed one instance of Gootloader affecting a customer in the US. Thanks to its anomaly-focused approach, Darktrace DETECT™ quickly identified the anomalous activity surrounding this emerging attack and brought it to the immediate attention of the customer’s security team. All the while, Darktrace RESPOND™ was in place and able to autonomously intervene, containing the suspicious activity and ensuring the Gootloader compromise could not progress any further.

In September 2023, Darktrace identified an instance of the Gootloader malware attempting to propagate within the network of a customer in the US. Darktrace identified the first indications of the compromise when it detected a device beaconing to an unusual external location and performing network scanning. Following this, the device was observed making additional command-and-control (C2) connections, before finally downloading an executable (.exe) file which likely represented the download of a further malicious payload.

As this customer had subscribed to the Proactive Notification Service (PTN), the suspicious activity was escalated to the Darktrace Security Operations Center (SOC) for further investigation by Darktrace’s expert analysts. The SOC team were able to promptly triage the incident and advise urgent follow-up actions.

Gootloader Attack Overview

Figure 1: Timeline of Anomalous Activities seen on the breach device.

Initial Beaconing and Scanning Activity

On September 21, 2023, Darktrace observed the first indications of compromise on the network when a device began to make regular connections to an external endpoint that was considered extremely rare for the network, namely ‘analyzetest[.]ir’.

Although the endpoint did not overtly seem malicious in nature (it appeared to be related to laboratory testing), Darktrace recognized that it had never previously been seen on the customer’s network and therefore should be treated with caution.  This initial beaconing activity was just the beginning of the malicious C2 communications, with several additional instances of beaconing detected to numerous suspicious endpoints, including funadhoo.gov[.]mv, tdgroup[.]ru’ and ‘army.mil[.]ng.

Figure 2: Initial beaconing activity detected on the breach device.

Soon thereafter, Darktrace detected the device performing internal reconnaissance, with an unusually large number of connections to other internal locations observed. This scanning activity appeared to primarily be targeting the SMB protocol by scanning port 445.

Within seconds of DETECT’s detection of this suspicious SMB scanning activity, Darktrace RESPOND moved to contain the compromise by blocking the device from connecting to port 445 and enforcing its ‘pattern of life’. Darktrace’s Self-Learning AI enables it to learn a device’s normal behavior and recognize if it deviates from this; by enforcing a pattern of life on an affected device, malicious activity is inhibited but the device is allowed to continue its expected activity, minimizing disruption to business operations.

Figure 3: The breach device Model Breach Event Log showing Darktrace DETECT identifying suspicious SMB scanning activity and the corresponding RESPOND actions.

Following the initial detection of this anomalous activity, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the beaconing and scanning activity and was able to connect these seemingly separate events into one incident. AI Analyst analyzes thousands of connections to hundreds of different endpoints at machine speed and then summarizes its findings in a single pane of glass, giving customers the necessary information to assess the threat and begin remediation if necessary. This significantly lessens the burden for human security teams, saving them previous time and resources, while ensuring they maintain full visibility over any suspicious activity on their network.

Figure 4: Cyber AI Analyst incident log summarizing the technical details of the device’s beaconing and scanning behavior.

Beaconing Continues

Darktrace continued to observe the device carrying out beaconing activity over the next few days, likely representing threat actors attempting to establish communication with their malicious infrastructure and setting up a foothold within the customer’s environment. In one such example, the device was seen connecting to the suspicious endpoint ‘fysiotherapie-panken[.]nl’. Multiple open-source intelligence (OSINT) vendors reported this endpoint to be a known malware delivery host [3].

Once again, Darktrace RESPOND was in place to quickly intervene in response to these suspicious external connection attempts. Over the course of several days, RESPOND blocked the offending device from connecting to suspicious endpoints via port 443 and enforced its pattern of life. These autonomous actions by RESPOND effectively mitigated and contained the attack, preventing it from escalating further along the kill chain and providing the customer’s security team crucial time to take act and employ their own remediation.

Figure 5: A sample of the autonomous RESPOND actions that was applied on the affected device.

Possible Payload Retrieval

A few days later, on September 26, 2023, Darktrace observed the affected device attempting to download a Windows Portable Executable via file transfer protocol (FTP) from the external location ‘ftp2[.]sim-networks[.]com’, which had never previously been seen on the network. This download likely represented the next step in the Gootloader infection, wherein additional malicious tooling is downloaded to further cement the malicious actors’ control over the device. In response, Darktrace RESPOND immediately blocked the device from making any external connections, ensuring it could not download any suspicious files that may have rapidly escalated the attackers’ efforts.

Figure 6: DETECT’s identification of the offending device downloading a suspicious executable file via FTP.

The observed combination of beaconing activity and a suspicious file download triggered an Enhanced Monitoring breach, a high-fidelity DETECT model designed to detect activities that are more likely to be indicative of compromise. These models are monitored by the Darktrace SOC round the clock and investigated by Darktrace’s expert team of analysts as soon as suspicious activity emerges.

In this case, Darktrace’s SOC triaged the emerging activity and sent an additional notice directly to the customer’s security team, informing them of the compromise and advising on next steps. As this customer had subscribed to Darktrace’s Ask the Expert (ATE) service, they also had a team of expert analysts available to them at any time to aid their investigations.

Figure 7: Enhanced Monitoring Model investigated by the Darktrace SOC.

Conclusion

Loader malware variants such as Gootloader often lay the groundwork for further, potentially more severe threats to be deployed within compromised networks. As such, it is crucial for organizations and their security teams to identify these threats as soon as they emerge and ensure they are effectively contained before additional payloads, like information-stealing malware or ransomware, can be downloaded.

In this instance, Darktrace demonstrated its value when faced with a multi-payload threat by detecting Gootloader at the earliest stage and responding to it with swift targeted actions, halting any suspicious connections and preventing the download of any additional malicious tooling.

Darktrace DETECT recognized that the beaconing and scanning activity performed by the affected device represented a deviation from its expected behavior and was indicative of a potential network compromise. Meanwhile, Darktrace RESPOND ensured that any suspicious activity was promptly shut down, buying crucial time for the customer’s security team to work with Darktrace’s SOC to investigate the threat and quarantine the compromised device.

Credit to: Ashiq Shafee, Cyber Security Analyst, Qing Hong Kwa, Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore

Appendices

Darktrace DETECT Model Detections

Anomalous Connection / Rare External SSL Self-Signed

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Young or Invalid Certificate SSL Connections to Rare

Compromise / High Volume of Connections with Beacon Score

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Slow Beaconing Activity To External Rare

Compromise / Beacon for 4 Days

Anomalous Connection / Suspicious Expired SSL

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Compromise / Sustained SSL or HTTP Increase

Compromise / Large Number of Suspicious Successful Connections

Compromise / Large Number of Suspicious Failed Connections

Device / Large Number of Model Breaches

Anomalous File / FTP Executable from Rare External Location

Device / Initial Breach Chain Compromise

RESPOND Models

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

List of Indicators of Compromise (IoCs)

Type

Hostname

IoCs + Description

explorer[.]ee - C2 Endpoint

fysiotherapie-panken[.]nl- C2 Endpoint

devcxp2019.theclearingexperience[.]com- C2 Endpoint

campsite.bplaced[.]net- C2 Endpoint

coup2pompes[.]fr- C2 Endpoint

analyzetest[.]ir- Possible C2 Endpoint

tdgroup[.]ru- C2 Endpoint

ciedespuys[.]com- C2 Endpoint

fi.sexydate[.]world- C2 Endpoint

funadhoo.gov[.]mv- C2 Endpoint

geying.qiwufeng[.]com- C2 Endpoint

goodcomix[.]fun- C2 Endpoint

ftp2[.]sim-networks[.]com- Possible Payload Download Host

MITRE ATT&CK Mapping

Tactic – Technique

Reconnaissance - Scanning IP blocks (T1595.001, T1595)

Command and Control - Web Protocols , Application Layer Protocol, One-Way Communication, External Proxy, Non-Application Layer Protocol, Non-Standard Port (T1071.001/T1071, T1071, T1102.003/T1102, T1090.002/T1090, T1095, T1571)

Collection – Man in the Browser (T1185)

Resource Development - Web Services, Malware (T1583.006/T1583, T1588.001/T1588)

Persistence - Browser Extensions (T1176)

References

1.     https://www.blackberry.com/us/en/solutions/endpoint-security/ransomware-protection/gootloader

2.     https://redcanary.com/threat-detection-report/threats/gootloader/

3.     https://www.virustotal.com/gui/domain/fysiotherapie-panken.nl

Continue reading
About the author
Ashiq Shafee
Cyber Security Analyst

Blog

No items found.

Seven Cyber Security Predictions for 2024

Default blog imageDefault blog image
13
Feb 2024

2024 Cyber Threat Predictions

After analyzing the observed threats and trends that have affected customers across the Darktrace fleet in the second half of 2023, the Darktrace Threat Research team have made a series of predictions. These assessments highlight the threats that are expected to impact Darktrace customers and the wider threat landscape in 2024.  

1. Initial access broker malware, especially loader malware, is likely to be a prominent threat.  

Initial access malware such as loaders, information stealers, remote access trojans (RATs), and downloaders, will probably remain some of the most relevant threats to most organizations, especially when noted in the context that many are interoperable, tailorable Malware-as-a-Service (MaaS) tools.  

These types of malware often serve as a gateway for threat actors to compromise a target network before launching subsequent, and often more severe, attacks. Would-be cyber criminals are now able to purchase and deploy these malware without the need for technical expertise.  

2. Infrastructure complexity will increase SaaS attacks and leave cloud environments vulnerable.

The increasing reliance on SaaS solutions and platforms for business operations, coupled with larger attack surfaces than ever before, make it likely that attackers will continue targeting organizations’ cloud environments with account takeovers granting unauthorized access to privileged accounts. These account hijacks can be further exploited to perform a variety of nefarious activities, such as data exfiltration or launching phishing campaigns.  

It is paramount for organizations to not only fortify their SaaS environments with security strategies including multifactor authentication (MFA), regular monitoring of credential usage, and strict access control, but moreover augment SaaS security using anomaly detection.  

3. The prevalence and evolution of ransomware will surge.

The Darktrace Threat Research team anticipates a surge in Ransomware-as-a-Service (RaaS) attacks, marking a shift away from conventional ransomware. The uptick in RaaS observed in 2023 evidences that ransomware itself is becoming increasingly accessible, lowering the barrier to entry for threat actors. This surge also demonstrates how lucrative RaaS is for ransomware operators in the current threat landscape, further reinforcing a rise in RaaS.  

This development is likely to coincide with a pivot away from traditional encryption-centric ransomware tactics towards more sophisticated and advanced extortion methods. Rather than relying solely on encrypting a target’s data for ransom, malicious actors are expected to employ double or even triple extortion strategies, encrypting sensitive data but also threatening to leak or sell stolen data unless their ransom demands are met.  

4. Threat actors will continue to rely on living-off-the-land techniques.

With evolving sophistication of security tools and greater industry adoption of AI techniques, threat actors have focused more and more on living-off-the-land. The extremely high volume of vulnerabilities discovered in 2023 highlights threat actors’ persistent need to compromise trusted organizational mechanisms and infrastructure to gain a foothold in networks. Although inbox intrusions remain prevalent, the exploitation of edge infrastructure has demonstrably expanded compared to previously endpoint-focused attacks.

Given the prevalence of endpoint evasion techniques and the high proportion of tactics utilizing native programs, threat actors will likely progressively live off the land, even utilizing new techniques or vulnerabilities to do so, rather than relying on unidentified malicious programs which evade traditional detection.

5. The “as-a-Service” marketplace will contribute to an increase in multi-phase compromises.

With the increasing “as-a-Service” marketplaces, it is likely that organizations will face more multi-phase compromises, where one strain of malware is observed stealing information and that data is sold to additional threat actors or utilized for second and/or third-stage malware or ransomware.  

This trend builds on the concept of initial access brokers but utilizes basic browser scraping and data harvesting to make as much profit throughout the compromise process as possible. This will likely result in security teams observing multiple malicious tools and strains of malware during incident response and/or multi-functional malware, with attack cycles and kill chains morphing into less linear and more abstract chains of activity. This makes it more essential than ever for security teams to apply an anomaly approach to stay ahead of asymmetric threats.  

6. Generative AI will let attackers phish across language barriers.

Classic phishing scams play a numbers game, targeting as many inboxes as possible and hoping that some users take the bait, even if there are spelling and grammar errors in the email. Now, Generative AI has reduced the barrier for entry, so malicious actors do not have to speak English to produce a convincing phishing email.  

In 2024, we anticipate this to extend to other languages and regions. For example, many countries in Asia have not yet been greatly impacted by phishing. Yet Generative AI continues to develop, with improved data input yielding improved output. More phishing emails will start to be generated in various languages with increasing sophistication.    

7. AI regulation and data privacy rules will stifle AI adoption.

AI regulation, like the European Union’s AI Act and NIS2, is starting to be implemented around the world. As policies continue to come out about AI and data privacy, practical and pragmatic AI adoption becomes more complex.  

Businesses will likely have to take a second look at AI they are adopting into their tech stacks to consider what may happen if a tool is suddenly deprecated because it is no longer fit for purpose or loses the approvals in place. Many will also have to use completely different supply chain evaluations from their usual ones based on developing compliance registrars. This increased complication may make businesses reticent to adopt innovative AI solutions as legislation scrambles to keep up.  

Learn more about observed threat trends and future predictions in the 2023 End of Year Threat Report

Continue reading
About the author
The Darktrace Threat Research Team

Good news for your business.
Bad news for the bad guys.

Start your free trial

Start your free trial

Flexible delivery
Cloud-based deployment.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oops! Something went wrong while submitting the form.

Get a demo

Flexible delivery
You can either install it virtually or with hardware.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.