Blog
/
Cloud
/
March 12, 2024

Cloud Migration Strategies, Services and Risks

Explore strategies, services, and risks associated with mastering cloud migration. Learn more here about hybrid cloud model, benefits, and migration phases.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Director of Product, Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Mar 2024

What is cloud migration?

Cloud migration, in its simplest form, refers to the process of moving digital assets, such as data, applications, and IT resources, from on-premises infrastructure or legacy systems to cloud computing environments. There are various flavours of migration and utilization, but according to a survey conducted by IBM, one of the most common is the 'Hybrid' approach, with around 77% of businesses adopting a hybrid cloud approach.

There are three key components of a hybrid cloud migration model:

  1. On-Premises (On-Prem): Physical location with some amount of hardware and networking, traditionally a data centre.
  2. Public Cloud: Third-party providers like AWS, Azure, and Google, who offer multiple services such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).
  3. Private Cloud: A cloud computing environment where resources are isolated for one customer.

Why does cloud migration matter for enterprises?

Cloud adoption provides many benefits to businesses, including:

  1. Scalability: Cloud environments allow enterprises to scale resources up or down based on demand, enabling them to quickly adapt to changing business requirements.
  2. Flexibility and Agility: Cloud platforms provide greater flexibility and agility, enabling enterprises to innovate and deploy new services more rapidly compared to traditional on-premises infrastructure.
  3. Cost Efficiency: Pay-as-you-go model, allowing enterprises to reduce capital expenditures on hardware and infrastructure.
  4. Enhanced Security: Cloud service providers invest heavily in security measures to protect data and infrastructure, offering advanced security features and compliance certifications.

The combination of these benefits provides significant potential for businesses to innovate and move quickly, ultimately allowing them to be flexible and adapt to changing market conditions, customer demands, and technological advancements with greater agility and efficiency.

Cloud migration strategy

There are multiple migration strategies a business can adopt, including:

  1. Rehosting (Lift-and-shift): Quickly completed but may lead to increased costs for running workloads.
  2. Refactoring (Cloud Native): Designed specifically for the cloud but requires a steep learning curve and staff training on new processes.
  3. Hybrid Cloud: Mix of on-premises and public cloud use, offering flexibility and scalability while keeping data secure on-premises. This can introduce complexities in setup and management overhead and requires ensuring security and compliance in both environments.

It is important to note that each strategy has its trade-offs and there is no single gold standard for a one size fits all cloud migration strategy. Different businesses will prioritize and leverage different benefits, for instance while some might prefer a rehosting strategy as it gets them migrated the fastest, it typically ends up also being the most costly strategy as “lift-and-shift” doesn’t take advantage of many key benefits that the cloud has to offer. Conversely, refactoring is a strategy optimized at making the most of the benefits that cloud providers have to offer, however the process of redesigning applications requires cloud expertise and based on the scale of applications that are required to be refactored this strategy might not be the quickest when it comes to moving applications from being hosted on premise to in the cloud.  

Phases of a cloud migration

At the highest level, there are four main steps in a successful migration:

  1. Discover: Identify and categorize IT assets, applications, and critical dependencies.
  2. Plan: Develop a detailed migration plan, including timelines, resource allocation, and risk management strategies.
  3. Migrate: Execute the migration plan, minimizing disruption to business operations.
  4. Optimize: Continuously optimize the cloud environment using automation, performance monitoring, and cost management tools to improve efficiency, performance, and scalability.

While it is natural to race towards the end goals of a cloud migration, most successful cloud migration strategies allocate the appropriate timelines to each phase.  

The “Discover” phase specifically is where most businesses can set themselves up for success. Having a complete understanding of assets, applications, services, and dependencies needed to migrate however is much easier said than done. Given the pace of change and how laborious of a task inventorying everything can be to manage and maintain, most mistakes at this stage will propagate and amplify through the migration journey.  

Risks and challenges of cloud migration

Though cloud migration offers a wealth of benefits, it also introduces new risks that need to be accounted for and managed effectively. Security should be considered a fundamental part of the process, not an additional measure that can be ‘bolted’ on at the end.

Let’s consider the most popular migration strategy, using a ‘Hybrid Cloud’. A recent report by the industry analyst group Forrester cited that Cloud Security Posture Management (CSPM) tools are just one facet of security, stating:

"No matter how good it is, using a CSPM solution alone will not provide you with full visibility, detection, and effective remediation capabilities for all threats. Your adversaries are also targeting operating systems, existing on-prem network infrastructure, and applications in their quest to steal valuable data".

Unpacking some of the risks here, it’s clear they fall into a range of categories, including:

  1. Security Concerns: Ensuring security across both on-premises and cloud environments, addressing potential misconfigurations and vulnerabilities.
  2. Contextual Understanding: Effective security requires a deep understanding of the organization's business processes and the context in which data and applications operate.
  3. Threat Detection and Response: Identifying and responding to threats in real-time requires advanced capabilities such as AI and anomaly detection.
  4. Platform Approach: Deploying integrated security solutions that provide end-to-end visibility, centralized management, and automated responses across hybrid infrastructure.

Since the cloud doesn’t operate in a vacuum, businesses will always have a myriad of 3rd party applications, users, endpoints, external services, and partners connecting and interacting with their cloud environments. From this perspective, being able to correlate and understand behaviors and activity both within the cloud and its surroundings becomes imperative.

It then follows that context from a business wide perspective is necessary. This has two distinct implications, the first is application or workload specific context (i.e. where do the assets, services, and functions alerted on reside within the cloud application) and the second is business wide context. Given the volume of alerts that security practitioners need to manage, findings that lack the appropriate context to fully understand and resolve the issue create additional strain on teams that are already managing a difficult challenge.  

Conclusion

With that in mind, Darktrace’s approach to security, with its existing and new advances in Cloud Detection and Response capabilities, anomaly detection across SaaS applications, and native ability to leverage many AI techniques to understand the business context within your dynamic cloud environment and on-premises infrastructure. It provides you with the integrated building blocks to provide the ‘360’ degree view required to detect and respond to threats before, during, and long after your enterprise migrates to the cloud.

References

IBM Transformation Index: State of Cloud https://www.ibm.com/blog/hybrid-cloud-use-cases/

https://www.forrester.com/report/the-top-trends-shaping-cloud-security-posture-management-cspm-in-2024/RES180379  

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Director of Product, Cloud Security

More in this series

No items found.

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing

Blog

/

Cloud

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI