Blog
/
AI
/
November 6, 2022

Behind Yanluowang: Unveiling Cyber Threat Tactics

Discover the latest insights into the Yanluowang leak organization, uncovering its members and tactics.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taisiia Garkava
Security Analyst
Written by
Dillon Ashmore
Security and Research
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2022

Background of Yanluowang

Yanluowang ransomware, also known as Dryxiphia, was first spotted in October 2021 by Symantec’s Threat Hunter Team. However, it has been operational since August 2021, when a threat actor used it to attack U.S. corporations. Said attack shared similar TTPs with ransomware Thieflock, designed by Fivehands ransomware gangs. This connection alluded to a possible link between the two through the presence or influence of an affiliate. The group has been known for successfully ransoming organisations globally, particularly those in the financial, manufacturing, IT services, consultancy, and engineering sectors.

Yanluowang attacks typically begin with initial reconnaissance, followed by credential harvesting and data exfiltration before finally encrypting the victim’s files. Once deployed on compromised networks, Yanluowang halts hypervisor virtual machines, all running processes and encrypts files using the “.yanluowang” extension. A file with name README.txt, containing a ransom note is also dropped. The note also warns victims against contacting law enforcement, recovery companies or attempting to decrypt the files themselves. Failure to follow this advice would result in distributed denial of service attacks against a victim, its employees and business partners. Followed by another attack, a few weeks later, in which all the victim’s files would be deleted.

The group’s name “Yanluowang” was inspired by the Chinese mythological figure Yanluowang, suggesting the group’s possible Chinese origin. However, the recent leak of chat logs belonging to the group, revealed those involved in the organisation spoke Russian. 

 Leak of Yanluowang’s chat logs

 On the 31st of October, a Twitter user named @yanluowangleaks shared the matrix chat and server leaks of the Yanluowang ransomware gang, alongside the builder and decryption source. In total, six files contained internal conversations between the group’s members. From the analysis of these chats, at least eighteen people have been involved in Yanluowang operations.

Twitter account where the leaks and decryption source were shared
Figure 1: Twitter account where the leaks and decryption source were shared

Potential members: ‘@killanas', '@saint', '@stealer', '@djonny', '@calls', '@felix', '@win32', '@nets', '@seeyousoon', '@shoker', '@ddos', '@gykko', '@loader1', '@guki', '@shiwa', '@zztop', '@al', '@coder1'

Most active members: ‘@saint’, ‘@killanas’, ‘@guki’, ‘@felix’, ‘@stealer’. 

To make the most sense out of the data that we analyzed, we combined the findings into two categories: tactics and organization.

Tactics 

From the leaked chat logs, several insights into the group’s operational security and TTPs were gained. Firstly, members were not aware of each other’s offline identities. Secondly, discussions surrounding security precautions for moving finances were discussed by members @killanas and @felix. The two exchanged recommendations on reliable currency exchange platforms as well as which ones to avoid that were known to leak data to law enforcement. The members also expressed paranoia over being caught with substantial amounts of money and therefore took precautions such as withdrawing smaller amounts of cash or using QR codes for withdrawals.

Additionally, the chat logs exposed the TTPs of Yanluowang. Exchanges between the group’s members @stealer, @calls and @saint, explored the possibilities of conducting attacks against critical infrastructure. One of these members, @call, was also quick to emphasise that Yanluowang would not target the critical infrastructure of former Soviet countries. Beyond targets, the chat logs also highlighted Yanluowang’s use of the ransomware, PayloadBIN but also that attacks that involved it may potentially have been misattributed to another ransomware actor, Evil Corp.

Further insight surrounding Yanluowang’s source code was also gained as it was revealed that it had been previously published on XSS.is as a downloadable file. The conversations surrounding this revealed that two members, @killanas and @saint, suspected @stealer was responsible for the leak. This suspicion was supported by @saint, defending another member whom he had known for eight years. It was later revealed that the code had been shared after a request to purchase it was made by a Chinese national. @saint also used their personal connections to have the download link removed from XSS.is. These connections indicate that some members of Yanluowang are well embedded in the ransomware and wider cybercrime community.

Another insight gained from the leaked chat logs was an expression by @saint in support of Ukraine, stating, “We stand with Ukraine” on the negotiation page of Yanluowang’s website. This action reflects a similar trend observed among threat actors where they have taken sides in the Russia-Ukraine conflict.

Regarding Yanluowang’s engagement with other groups, it was found that a former member of Conti had joined the group. This inference was made by @saint when a conversation regarding the Conti leak revolved around the possible identification of the now Yanluowang member @guki, in the Conti files. It was also commented that Conti was losing a considerable number of its members who were then looking for new work. Conversations about other ransomware groups were had with the mentioning of the REVIL group by @saint, specifically stating that five arrested members of the gang were former classmates. He backed his statement by attaching the article about it, to which @djonny replies that those are indeed REVIL members and that he knows it from his sources.

Organization 

When going through the chat logs, several observations were made that can offer some insights into the group's organizational structure. In one of the leaked files, user @saint was the one to publish the requirements for the group's ".onion" website and was also observed instructing other users on the tasks they had to complete. Based on this, @saint could be considered the leader of the group. Additionally, there was evidence indicating that a few users could be in their 30s or 40s, while most participants are in their 20s.

More details regarding Yanluowang's organizational structure were discussed deeper into the leak. The examples indicate various sub-groups within the Yanlouwang group and that a specific person coordinates each group. From the logs, there is a high probability that @killanas is the leader of the development team and has several people working under him. It is also possible that @stealer is on the same level as @killanas and is potentially the supervisor of another team within the group. This was corroborated when @stealer expressed concerns about the absence of certain group members on several occasions. There is also evidence showing that he was one of three people with access to the source code of the group. 

Role delineation within the group was also quite clear, with each user having specific tasks: DDoS (distributed denial of service) attacks, social engineering, victim negotiations, pentesting or development, to mention a few. When it came to recruiting new members, mostly pentesters, Yanluowang would recruit through XSS.is and Exploit.in forums.

Underground analysis and members’ identification 

From the leaked chat logs, several “.onion” URLs were extracted; however, upon further investigation, each site had been taken offline and removed from the TOR hashring. This suggests that Yanluowang may have halted all operations. One of the users on XSS.is posted a picture showing that the Yanluowang onion website was hacked, stating, “CHECKMATE!! YANLUOWANG CHATS HACKED @YANLUOWANGLEAKS TIME’S UP!!”.

Figure 2: The screenshot of Yanluowang website on Tor (currently offline)

After learning that Yanluowang used Russian Web Forums, we did an additional search to see what we could find about the group and the mentioned nicknames. 

By searching through XSS.Is we managed to identify the user registered as @yanluowang. The date of the registration on the forum dates to 15 March 2022. Curiously, at the time of analysis, we noticed the user was online. There were in total 20 messages posted by @yanluowang, with a few publications indicating the group is looking for new pentesters.

Figure 3: The screenshot of Yanluowang profile on XSS.is 

Figure 4: The screenshot of Yanluowang posts about pentester recruitment on XSS.is 

While going through the messages, it was noticed the reaction posted by another user identified as @Sa1ntJohn, which could be the gang member @saint.

Figure 5: The screenshot of Sa1ntJohn’s profile on XSS.is

Looking further, we identified that user @Ekranoplan published three links to the website doxbin.com containing information about three potential members of the YanLuoWang gang: @killanas/coder, @hardbass and @Joe/Uncle. The profile information was published by the user @Xander2727.

Figure 6: The screenshot of Yanlouwang member-profile leak on XSS.is
Figure 7: The screenshot of @hardbass Yanlouwang member profile leak
Figure 8: The screenshot of @killanas/coder Yanlouwang member profile leak.

If the provided information is correct, two group members are Russian and in their 30s, while another member is Ukrainian and in his 20s. One of the members, @killanas, who was also referenced in chat logs, is identified as the lead developer of the Yanluowang group; giving the interpretation of the chat leaks a high-level of confidence. Another two members, who were not referenced in the logs, took roles as Cracked Software/Malware provider and English translator/Victim Negotiator.

Implications for the wider ransomware landscape

To conclude with the potential implications of this leak, we have corroborated the evidence gathered throughout this investigation and employed contrarian analytical techniques. The ascertained implications that follow our mainline judgement, supporting evidence and our current analytical view on the matter can be categorized into three key components of this leak:

Impact on the ransomware landscape

The leak of Yanluowang’s chat logs has several implications for the broader ransomware landscape. This leak, much like the Conti leak in March, spells the end for Yanluowang operations for the time being, given how much of the group’s inner workings it has exposed. This could have an adverse effect. While Yanluowang did not control as large of a share of the ransomware market as Conti did, their downfall will undoubtedly create a vacuum space for established groups for their market share. The latter being a consequence of the release of their source code and build tools. 

Source code

The release of Yanluowang’s source code has several outcomes. If the recipients have no malintent, it could aid in reverse engineering the ransomware, like how a decryption tool for Yanluowng was released earlier this year. An alternative scenario is that the publication of the source code will increase the reach and deployment of this ransomware in the future, in adapted or modified versions by other threat actors. Reusing leaked material is notorious among ransomware actors, as seen in the past, when Babuk’s source code was leaked and led to the development of several variants based on this leak, including Rook and Pandora. This could also make it harder to attribute attacks to one specific group.

Members

The migration of unexposed Yanluowang members to other ransomware gangs could further add to the proliferation of ransomware groups. Such forms of spreading ransomware have been documented in the past when former Conti members repurposed their tactics to join efforts with an initial access broker, UAC-0098. Yet, the absence of evidence from members expressing and/or acting upon this claim requires further investigation and analysis. However, as there is no evidence of absence – this implication is based on the previously observed behavior from members of other ransomware gangs.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taisiia Garkava
Security Analyst
Written by
Dillon Ashmore
Security and Research

More in this series

No items found.

Blog

/

Cloud

/

June 12, 2025

Breaking Silos: Why Unified Security is Critical in Hybrid World

laptop with statistics on itDefault blog imageDefault blog image

Hybrid environments demand end-to-end visibility to stop modern attacks

Hybrid environments are a dominant trend in enterprise technology, but they continue to present unique issues to the defenders tasked with securing them. By 2026, Gartner predicts that 75% of organizations will adopt hybrid cloud strategies [1]. At the same time, only 23% of organizations report full visibility across cloud environments [2].

That means a strong majority of organizations do not have comprehensive visibility across both their on-premises and cloud networks. As a result, organizations are facing major challenges in achieving visibility and security in hybrid environments. These silos and fragmented security postures become a major problem when considering how attacks can move between different domains, exploiting the gaps.

For example, an attack may start with a phishing email, leading to the compromise of a cloud-based application identity and then moving between the cloud and network to exfiltrate data. Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.

Given this, unified visibility is essential for security teams to reduce blind spots and detect threats across the entire attack surface.

Risks of fragmented visibility

Silos arise due to separate teams and tools managing on-premises and cloud environments. Many teams have a hand in cloud security, with some common ones including security, infrastructure, DevOps, compliance, and end users, and these teams can all use different tools. This fragmentation increases the likelihood of inconsistent policies, duplicate alerts, and missed threats. And that’s just within the cloud, not even considering the additional defenses involved with network security.

Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks. The lack of visibility between on-premises and cloud environments contributes to missed threats and delayed incident response. In fact, breaches involving stolen or compromised credentials take an average of 292 to identify and contain [3]. That’s almost ten months.

The risk of fragmented visibility runs especially high as companies undergo cloud migrations. As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations.

Unified visibility is the solution

Unified visibility is achieved by having a single-pane-of-glass view to monitor both on-premises and cloud environments. This type of view brings many benefits, including streamlined detection, faster response times, and reduced complexity.

This can only be accomplished through integrations or interactions between the teams and tools involved with both on-premises security and cloud security.

AI-driven platforms, like Darktrace, are especially well equipped to enable the real-time monitoring and insights needed to sustain unified visibility. This is because they can handle the large amounts of data and data types.

Darktrace accomplishes this by plugging into an organization’s infrastructure so the AI can ingest and analyze data and its interactions within the environment to form an understanding of the organization’s normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence.

This dynamic understanding of normal means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. This helps reduce noise while surfacing real threats, across cloud and on-prem environments without manual tuning.

In this way, given its versatile AI-based, platform approach, Darktrace empowers security teams with real-time monitoring and insights across both the network and cloud.

Unified visibility in the modern threat landscape

As part of the Darktrace ActiveAI Security Platform™, Darktrace / CLOUD works continuously across public, private, hybrid, and multi-cloud deployments. With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures.

It is always on the lookout for changes, driven by user and service activity. For example, unusual user activity can significantly raise the asset’s score, prompting Darktrace’s AI to update its architectural view and keep a living record of the cloud’s ever-changing landscape, providing near real-time insights into what’s happening.

This continuous architectural awareness ensures that security teams have a real-time understanding of cloud behavior and not just a static snapshot.

Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.
Figure 1. Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.

With this dynamic cloud visibility and monitoring, Darktrace / CLOUD can help unify and secure environments.

Real world example: Remote access supply chain attacks

Sectop Remote Access Trojan (RAT) malware, also known as ‘ArchClient2,’ is a .NET RAT that contains information stealing capabilities and allows threat actors to monitor and control targeted computers. It is commonly distributed through drive-by downloads of illegitimate software via malvertizing.

Darktrace has been able to detect and respond to Sectop RAT attacks using unified visibility and platform-wide coverage. In one such example, Darktrace observed one device making various suspicious connections to unusual endpoints, likely in an attempt to receive C2 information, perform beaconing activity, and exfiltrate data to the cloud.

This type of supply chain attack can jump from the network to the cloud, so a unified view of both environments helps shorten detection and response times, therefore mitigating potential impact. Darktrace’s ability to detect these cross-domain behaviors stems from its AI-driven, platform-native visibility.

Conclusion

Organizations need unified visibility to secure complex, hybrid environments effectively against threats and attacks. To achieve this type of comprehensive visibility, the gaps between legacy security tools across on-premises and cloud networks can be bridged with platform tools that use AI to boost data analysis for highly accurate behavioral prediction and anomaly detection.

Read more about the latest trends in cloud security in the blog “Protecting Your Hybrid Cloud: The Future of Cloud Security in 2025 and Beyond.”

References:

1. Gartner, May 22, 2023, “10 Strategic Data and Analytics Predictions Through 2028

2. Cloud Security Alliance, February 14, 2024, “Cloud Security Alliance Survey Finds 77% of Respondents Feel Unprepared to Deal with Security Threats

3. IBM, “Cost of a Data Breach Report 2024

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

OT

/

June 11, 2025

Proactive OT security: Lessons on supply chain risk management from a rogue Raspberry Pi

man working on computerDefault blog imageDefault blog image

Understanding supply chain risk in manufacturing

For industries running Industrial Control Systems (ICS) such as manufacturing and fast-moving consumer goods (FMCG), complex supply chains mean that disruption to one weak node can have serious impacts to the entire ecosystem. However, supply chain risk does not always originate from outside an organization’s ICS network.  

The implicit trust placed on software or shared services for maintenance within an ICS can be considered a type of insider threat [1], where defenders also need to look ‘from within’ to protect against supply chain risk. Attackers have frequently mobilised this form of insider threat:

  • Many ICS and SCADA systems were compromised during the 2014 Havex Watering Hole attack, where via operators’ implicit trust in the trojanized versions of legitimate applications, on legitimate but compromised websites [2].
  • In 2018, the world’s largest manufacturer of semiconductors and processers shut down production for three days after a supplier installed tainted software that spread to over 10,000 machines in the manufacturer’s network [3].
  • During the 2020 SolarWinds supply chain attack, attackers compromised a version of Orion software that was deployed from SolarWinds’ own servers during a software update to thousands of customers, including tech manufacturing companies such as Intel and Nvidia [4].

Traditional approaches to ICS security have focused on defending against everything from outside the castle walls, or outside of the ICS network. As ICS attacks become more sophisticated, defenders must not solely rely on static perimeter defenses and prevention. 

A critical part of active defense is understanding the ICS environment and how it operates, including all possible attack paths to the ICS including network connections, remote access points, the movement of data across zones and conduits and access from mobile devices. For instance, original equipment manufacturers (OEMs) and vendors often install remote access software or third-party equipment in ICS networks to facilitate legitimate maintenance and support activities, which can unintentionally expand the ICS’ attack surface.  

This blog describes an example of the convergence between supply chain risk and insider risk, when a vendor left a Raspberry Pi device in a manufacturing customer’s ICS network without the customer’s knowledge.

Case study: Using unsupervised machine learning to detect pre-existing security issues

Raspberry Pi devices are commonly used in SCADA environments as low-cost, remotely accessible data collectors [5][6][7]. They are often paired with Industrial Internet of Things (IIoT) for monitoring and tracking [8]. However, these devices also represent a security risk because their small physical size and time-consuming nature of physical inspection makes them easy to overlook. This poses a security risk, as these devices have previously been used to carry out USB-based attacks or to emulate Ethernet-over-USB connections to exfiltrate sensitive data [8][9].

In this incident, a Darktrace customer was unaware that their supplier had installed a Raspberry Pi device on their ICS network. Crucially, the installation occurred prior to Darktrace’s deployment on the customer’s network. 

For other anomaly detection tools, this order of events meant that this third-party device would likely have been treated as part of the customer’s existing infrastructure. However, after Darktrace was deployed, it analyzed the metadata from the encrypted HTTPS and DNS connections that the Raspberry Pi made to ‘call home’ to the supplier and determined that these connections were  unusual compared to the rest of the devices in the network, even in the absence of any malicious indicators of compromise (IoCs).  

Darktrace triggered the following alerts for this unusual activity that consequently notified the customer to the pre-existing threat of an unmanaged device already present in their network:

  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Tags / New Raspberry Pi Device
  • Device / DNS Requests to Unusual Server
  • Device / Anomaly Indicators / Spike in Connections to Rare Endpoint Indicator
Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  
Figure 1: Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  

Darktrace’s Cyber AI Analyst launched an autonomous investigation into the activity, correlating related events into a broader incident and generating a report outlining the potential threat along with supporting technical details.

Darktrace’s anomaly-based detection meant that the Raspberry Pi device did not need to be observed performing clearly malicious behavior to alert the customer to the security risk, and neither can defenders afford to wait for such escalation.

Why is this significant?

In 2021 a similar attack took place. Aiming to poison a Florida water treatment facility, attackers leveraged a TeamViewer instance that had been dormant on the system for six months, effectively allowing the attacker to ‘live off the land’ [10].  

The Raspberry Pi device in this incident also remained outside the purview of the customer’s security team at first. It could have been leveraged by a persistent attacker to pivot within the internal network and communicate externally.

A proactive approach to active defense that seeks to minimize and continuously monitor the attack surface and network is crucial.  

The growing interest in manufacturing from attackers and policymakers

Significant motivations for targeting the manufacturing sector and increasing regulatory demands make the convergence of supply chain risk, insider risk, and the prevalence of stealthy living-off-the-land techniques particularly relevant to this sector.

Manufacturing is consistently targeted by cybercriminals [11], and the sector’s ‘just-in-time’ model grants attackers the opportunity for high levels of disruption. Furthermore, under NIS 2, manufacturing and some food and beverage processing entities are now designated as ‘important’ entities. This means stricter incident reporting requirements within 24 hours of detection, and enhanced security requirements such as the implementation of zero trust and network segmentation policies, as well as measures to improve supply chain resilience [12][13][14].

How can Darktrace help?

Ultimately, Darktrace successfully assisted a manufacturing organization in detecting a potentially disruptive 'near-miss' within their OT environment, even in the absence of traditional IoCs.  Through passive asset identification techniques and continuous network monitoring, the customer improved their understanding of their network and supply chain risk.  

While the swift detection of the rogue device allowed the threat to be identified before it could escalate, the customer could have reduced their time to respond by using Darktrace’s built-in response capabilities, had Darktrace’s Autonomous Response capability been enabled.  Darktrace’s Autonomous Response can be configured to target specific connections on a rogue device either automatically upon detection or following manual approval from the security team, to stop it communicating with other devices in the network while allowing other approved devices to continue operating. Furthermore, the exportable report generated by Cyber AI Analyst helps security teams to meet NIS 2’s enhanced reporting requirements.  

Sophisticated ICS attacks often leverage insider access to perform in-depth reconnaissance for the development of tailored malware capabilities.  This case study and high-profile ICS attacks highlight the importance of mitigating supply chain risk in a similar way to insider risk.  As ICS networks adapt to the introduction of IIoT, remote working and the increased convergence between IT and OT, it is important to ensure the approach to secure against these threats is compatible with the dynamic nature of the network.  

Credit to Nicole Wong (Principal Cyber Analyst), Matthew Redrup (Senior Analyst and ANZ Team Lead)

[related-resource]

Appendices

MITRE ATT&CK Mapping

  • Infrastructure / New Raspberry Pi Device - INITIAL ACCESS - T1200 Hardware Additions
  • Device / DNS Requests to Unusual Server - CREDENTIAL ACCESS, COLLECTION - T1557 Man-in-the-Middle
  • Compromise / Agent Beacon - COMMAND AND CONTROL - T1071.001 Web Protocols

References

[1] https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats

[2] https://www.trendmicro.com/vinfo/gb/threat-encyclopedia/web-attack/139/havex-targets-industrial-control-systems

[3]https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html

[4] https://www.theverge.com/2020/12/21/22194183/intel-nvidia-cisco-government-infected-solarwinds-hack

[5] https://www.centreon.com/monitoring-ot-with-raspberry-pi-and-centreon/

[6] https://ieeexplore.ieee.org/document/9107689

[7] https://www.linkedin.com/pulse/webicc-scada-integration-industrial-raspberry-pi-devices-mryff

[8] https://www.rowse.co.uk/blog/post/how-is-the-raspberry-pi-used-in-the-iiot

[9] https://sepiocyber.com/resources/whitepapers/raspberry-pi-a-friend-or-foe/#:~:text=Initially%20designed%20for%20ethical%20purposes,as%20cyberattacks%20and%20unauthorized%20access

[10] https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

[11] https://www.mxdusa.org/2025/02/13/top-cyber-threats-in-manufacturing/

[12] https://www.shoosmiths.com/insights/articles/nis2-what-manufacturers-and-distributors-need-to-know-about-europes-new-cybersecurity-regime

[13] https://www.goodaccess.com/blog/nis2-require-zero-trust-essential-security-measure#zero-trust-nis2-compliance

[14] https://logisticsviewpoints.com/2024/11/06/the-impact-of-nis-2-regulations-on-manufacturing-supply-chains/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI