Blog
/
OT
/
February 9, 2022

The Impact of Conti Ransomware on OT Systems

Learn how ransomware can spread throughout converged IT/OT environments, and how Self-Learning AI empowers organizations to contain these threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2022

Ransomware has taken the world by storm, and IT is not the only technology affected. Operational Technology (OT), which is increasingly blending with IT, is also susceptible to ransomware tactics, techniques, and procedures (TTPs). And when ransomware strikes OT, the effects have the potential to be devastating.

Here, we will look at a ransomware attack that spread from IT to OT systems. The attack was detected by Darktrace AI.

This threat find demonstrates a use case of Darktrace’s technology that delivers immense value to organizations with OT: spotting and stopping ransomware at its earliest stages, before the damage is done. This is particularly helpful for organizations with interconnected enterprise and industrial environments, as it means:

  1. Emerging attacks can be contained in IT before they spread laterally into OT, and even before they spread from device to device in IT;
  2. Organizations gain granular visibility into their industrial environments, detecting deviations from normal activity, and quick identification of remediating actions.

Threat find: Ransomware and crypto-mining hijack affecting IT and OT systems

Darktrace recently identified an aggressive attack targeting an OT R&D investment firm in EMEA. The attack originally started as a crypto-mining campaign and later evolved into ransomware. This organization deployed Darktrace in a digital estate containing both IT and OT assets that spanned over 3,000 devices.

If the organization had deployed Darktrace’s Autonomous Response technology in active mode, this threat would have been stopped in its earliest stages. Even in the absence of Autonomous Response, however, mere human attention would have stopped this attack’s progression. Darktrace’s Self-Learning AI gave clear indications of an ongoing compromise in the month prior to the detonation of ransomware. In this case, however, the security team was not monitoring Darktrace’s interface, and so the attack was allowed to proceed.

Compromised OT devices

This threat find will focus on the attack techniques used to take over two OT devices, specifically, a HMI (human machine interface), and an ICS Historian used to collect and log industrial data. These OT devices were both VMware virtual machines running Windows OS, and were compromised as part of a wider Conti ransomware infection. Both devices were being used primarily within an industrial control system (ICS), running a popular ICS software package and making regular connections to an industrial cloud platform.

These devices were thus part of an ICSaaS (ICS-as-a-Service) environment, using virtualised and Cloud platforms to run analytics, update threat intelligence, and control the industrial process. As previously highlighted by Darktrace, the convergence of cloud and ICS increases a network’s attack surface and amplifies cyber risk.

Attack lifecycle

Opening stages

The initial infection of the OT devices occurred when a compromised Domain Controller (DC) made unusual Active Directory requests. The devices made subsequent DCE-RPC binds for epmapper, often used by attackers for command execution, and lsarpc, used by attackers to abuse authentication policies and escalate privileges.

The payload was delivered when the OT devices used SMB to connect to the sysvol folder on the DC and read a malicious executable file, called SetupPrep.exe.

Figure 1: Darktrace model breaches across the whole network from initial infection on October 21 to the detonation on November 15.

Figure 2: ICS reads on the HMI in the lead up, during, and following detonation of the ransomware.

Device encryption and lateral spread

The malicious payload remained dormant on the OT devices for three weeks. It seems the attacker used the time to install crypto-mining malware elsewhere on the network and consolidate their foothold.

On the day the ransomware detonated, the attacker used remote management tools to initiate encryption. The PSEXEC tool was used on an infected server (separate from the original DC) to remotely execute malicious .dll files on the compromised OT devices.

The devices then attempted to make command and control (C2) connections to rare external endpoints using suspicious ports. Like in many ICS networks, sufficient network segregation had been implemented to prevent the HMI device from making successful connections to the Internet and the C2 communications failed. But worryingly, the failed C2 did not prevent the attack from proceeding or the ransomware from detonating.

The Historian device made successful C2 connections to around 40 unique external endpoints. Darktrace detected beaconing-type behavior over suspicious TCP/SSL ports including 465, 995, 2078, and 2222. The connections were made to rare destination IP addresses that did not specify the Server Name Indication (SNI) extension hostname and used self-signed and/or expired SSL certificates.

Both devices enumerated network SMB shares and wrote suspicious shell scripts to network servers. Finally, the devices used SMB to encrypt files stored in network shares, adding a file extension which is likely to be unique to this victim and which will be called ABCXX for the purpose of this blog. Most encrypted files were uploaded to the folder in which the file was originally located, but in some instances were moved to the images folder.

During the encryption, the device was using the machine account to authenticate SMB sessions. This is in contrast to other ransomware incidents that Darktrace has observed, in which admin or service accounts are compromised and abused by the attacker. It is possible that in this instance the attacker was able to use ‘Living off the Land’ techniques (for example the use of lsarpc pipe) to give the machine account admin privileges.

Examples of files being encrypted and moved:

  • SMB move success
  • File: new\spbr0007\0000006A.bak
  • Renamed: new\spbr0007\0000006A.bak.ABCXX
  • SMB move success
  • File: ActiveMQ\readme.txt
  • Renamed: Images\10j0076kS1UA8U975GC2e6IY.488431411265952821382.png.ABCXX

Detonation of ransomware

Upon detonation, the ransomware note readme.txt was written by the ICS to targeted devices as part of the encryption activity.

The final model breached by the device was “Unresponsive ICS Device” as the device either stopped working due to the effects of the ransomware, or was removed from the network.

Figure 3: abc-histdev — external connections filtered on destination port 995 shows C2 connections starting around one hour before encryption began.

How the attack bypassed the rest of the security stack

In this threat find, there were a number of factors which resulted in the OT devices becoming compromised.

The first is IT/OT convergence. The ICS network was insufficiently segregated from the corporate network. This means that devices could be accessed by the compromised DC during the lateral movement stage of the attack. As OT becomes more reliant on IT, ensuring sufficient segregation is in place, or that an attacker can not circumvent such segregation, is becoming an ever increasing challenge for security teams.

Another reason is that the attacker used attack methods which leverage Living off the Land techniques to compromise devices with no discrimination as to whether they were part of an IT or OT network. Many of the machines used to operate ICS networks, including the devices highlighted here, rely on operating systems vulnerable to the kinds of TTPs observed here and that are regularly employed by ransomware groups.

Darktrace insights

Darktrace’s Cyber AI Analyst was able to stitch together many disparate forms of unusual activity across the compromised devices to give a clear security narrative containing details of the attack. The incident report for the Historian server is shown below. This provides a clear illustration of how Cyber AI Analyst can close any skills or communication gap between IT and OT specialists.

Figure 4: Cyber AI Analyst of the Historian server (abc-histdev). It investigated and reported the C2 communication (step 2) that started just before network reconnaissance using TCP scanning (step 3) and the subsequent file encryption over SMB (step 4).

In total, the attacker’s dwell time within the digital estate was 25 days. Unfortunately, it lead to disruption to operational technology, file encryption and financial loss. Altogether, 36 devices were crypto-mining for over 20 days – followed by nearly 100 devices (IT and OT) becoming encrypted following the detonation of the ransomware.

If it were active, Autonomous Response would have neutralized this activity, containing the damage before it could escalate into crisis. Darktrace’s Self-Learning AI gave clear indications of an ongoing compromise in the month prior to the detonation of ransomware, and so any degree of human attention toward Darktrace’s revelations would have stopped the attack.

Autonomous Response is highly configurable, and so, in industrial environments — whether air-gapped OT or converged IT/OT ecosystems — Antigena can be deployed in a variety of manners. In human confirmation mode, human operators need to give the green light before the AI takes action. Antigena can also be deployed only in the higher levels of the Purdue model, or the “IT in OT,” protecting the core assets from fast-moving attacks like ransomware.

Ransomware and interconnected IT/OT systems

ICS networks are often operated by machines that rely on operating systems which can be affected by TTPs regularly employed by ransomware groups — that is, TTPs such as Living off the Land, which do not discriminate between IT and OT.

The threat that ransomware poses to organizations with OT, including critical infrastructure, is so severe that the Cyber Infrastructure and Security Agency (CISA) released a fact sheet concerning these threats in the summer of 2021, noting the risk that IT attacks pose to OT networks:

“OT components are often connected to information technology (IT) networks, providing a path for cyber actors to pivot from IT to OT networks… As demonstrated by recent cyber incidents, intrusions affecting IT networks can also affect critical operational processes even if the intrusion does not directly impact an OT network.”

Major ransomware attacks against the Colonial Pipeline and JBS Foods demonstrate the potential for ransomware affecting OT to cause severe economic disruption on a national and international scale. And ransomware can wreak havoc on OT systems regardless of whether they directly target OT systems.

As industrial environments continue to converge and evolve — be they IT/OT, ICSaaS, or simply poorly segregated legacy systems — Darktrace stands ready to contain attacks before the damage is done. It is time for organizations with industrial environments to take the quantum leap forward that Darktrace’s Self-Learning AI is uniquely positioned to provide.

Thanks to Darktrace analysts Ash Brice and Andras Balogh for their insights on the above threat find.

Discover more on how Darktrace protects OT environments from ransomware

Darktrace model detections

HMI in chronological order at time of detonation:

  • Anomalous Connection / SMB Enumeration
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • ICS / Unusual Data Transfer By OT Device
  • ICS / Unusual Unresponsive ICS Device

Historian

  • ICS / Rare External from OT Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • ICS / Unusual Activity From OT Device
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / SMB Access Failures
  • Device / Large Number of Model Breaches
  • ICS / Unusual Data Transfer By OT Device
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Device / SMB Lateral Movement
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • Device / Multiple Lateral Movement Model Breaches [Enhanced Monitoring]

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Network

/

February 3, 2026

Darktrace Malware Analysis: Unpacking SnappyBee

darktace malware analysis snappybeeDefault blog imageDefault blog image

Introduction

The aim of this blog is to be an educational resource, documenting how an analyst can perform malware analysis techniques such as unpacking. This blog will demonstrate the malware analysis process against well-known malware, in this case SnappyBee.

SnappyBee (also known as Deed RAT) is a modular backdoor that has been previously attributed to China-linked cyber espionage group Salt Typhoon, also known as Earth Estries [1] [2]. The malware was first publicly documented by TrendMicro in November 2024 as part of their investigation into long running campaigns targeting various industries and governments by China-linked threat groups.

In these campaigns, SnappyBee is deployed post-compromise, after the attacker has already obtained access to a customer's system, and is used to establish long-term persistence as well as deploying further malware such as Cobalt Strike and the Demodex rootkit.

To decrease the chance of detection, SnappyBee uses a custom packing routine. Packing is a common technique used by malware to obscure its true payload by hiding it and then stealthily loading and executing it at runtime. This hinders analysis and helps the malware evade detection, especially during static analysis by both human analysts and anti-malware services.

This blog is a practical guide on how an analyst can unpack and analyze SnappyBee, while also learning the necessary skills to triage other malware samples from advanced threat groups.

First principles

Packing is not a new technique, and threat actors have generally converged on a standard approach. Packed binaries typically feature two main components: the packed data and an unpacking stub, also called a loader, to unpack and run the data.

Typically, malware developers insert a large blob of unreadable data inside an executable, such as in the .rodata section. This data blob is the true payload of the malware, but it has been put through a process such as encryption, compression, or another form of manipulation to render it unreadable. Sometimes, this data blob is instead shipped in a different file, such as a .dat file, or a fake image. When this happens, the main loader has to read this using a syscall, which can be useful for analysis as syscalls can be easily identified, even in heavily obfuscated binaries.

In the main executable, malware developers will typically include an unpacking stub that takes the data blob, performs one or more operations on it, and then triggers its execution. In most samples, the decoded payload data is loaded into a newly allocated memory region, which will then be marked as executable and executed. In other cases, the decoded data is instead dropped into a new executable on disk and run, but this is less common as it increases the likelihood of detection.

Finding the unpacking routine

The first stage of analysis is uncovering the unpacking routine so it can be reverse engineered. There are several ways to approach this, but it is traditionally first triaged via static analysis on the initial stages available to the analyst.

SnappyBee consists of two components that can be analyzed:

  • A Dynamic-link Library (DLL) that acts as a loader, responsible for unpacking the malicious code
  • A data file shipped alongside the DLL, which contains the encrypted malicious code

Additionally, SnappyBee includes a legitimate signed executable that is vulnerable to DLL side-loading. This means that when the executable is run, it will inadvertently load SnappyBee’s DLL instead of the legitimate one it expects. This allows SnappyBee to appear more legitimate to antivirus solutions.

The first stage of analysis is performing static analysis of the DLL. This can be done by opening the DLL within a disassembler such as IDA Pro. Upon opening the DLL, IDA will display the DllMain function, which is the malware’s initial entry point and the first code executed when the DLL is loaded.

The DllMain function
Figure 1: The DllMain function

First, the function checks if the variable fdwReason is set to 1, and exits if it is not. This variable is set by Windows to indicate why the DLL was loaded. According to Microsoft Developer Network (MSDN), a value of 1 corresponds to DLL_PROCESS_ATTACH, meaning “The DLL is being loaded into the virtual address space of the current process as a result of the process starting up or as a result of a call to LoadLibrary” [3]. Since SnappyBee is known to use DLL sideloading for execution, DLL_PROCESS_ATTACH is the expected value when the legitimate executable loads the malicious DLL.

SnappyBee then uses the GetModule and GetProcAddress to dynamically resolve the address of the VirtualProtect in kernel32 and StartServiceCtrlDispatcherW in advapi32. Resolving these dynamically at runtime prevents them from showing up as a static import for the module, which can help evade detection by anti-malware solutions. Different regions of memory have different permissions to control what they can be used for, with the main ones being read, write, and execute. VirtualProtect is a function that changes the permissions of a given memory region.

SnappyBee then uses VirtualProtect to set the memory region containing the code for the StartServiceCtrlDispatcherW function as writable. It then inserts a jump instruction at the start of this function, redirecting the control flow to one of the SnappyBee DLL’s other functions, and then restores the old permissions.

In practice, this means when the legitimate executable calls StartServiceCtrlDispatcherW, it will immediately hand execution back to SnappyBee. Meanwhile, the call stack now appears more legitimate to outside observers such as antimalware solutions.

The hooked-in function then reads the data file that is shipped with SnappyBee and loads it into a new memory allocation. This pattern of loading the file into memory likely means it is responsible for unpacking the next stage.

The start of the unpacking routine that reads in dbindex.dat.
Figure 2: The start of the unpacking routine that reads in dbindex.dat.

SnappyBee then proceeds to decrypt the memory allocation and execute the code.

The memory decryption routine.
Figure 3: The memory decryption routine.

This section may look complex, however it is fairly straight forward. Firstly, it uses memset to zero out a stack variable, which will be used to store the decryption key. It then uses the first 16 bytes of the data file as a decryption key to initialize the context from.

SnappyBee then calls the mbed_tls_arc4_crypt function, which is a function from the mbedtls library. Documentation for this function can be found online and can be referenced to better understand what each of the arguments mean [4].

The documentation for mbedtls_arc4_crypt.
Figure 4: The documentation for mbedtls_arc4_ crypt.

Comparing the decompilation with the documentation, the arguments SnappyBee passes to the function can be decoded as:

  • The context derived from 16-byte key at the start of the data is passed in as the context in the first parameter
  • The file size minus 16 bytes (to account for the key at the start of the file) is the length of the data to be decrypted
  • A pointer to the file contents in memory, plus 16 bytes to skip the key, is used as the input
  • A pointer to a new memory allocation obtained from VirtualAlloc is used as the output

So, putting it all together, it can be concluded that SnappyBee uses the first 16 bytes as the key to decrypt the data that follows , writing the output into the allocated memory region.

SnappyBee then calls VirtualProtect to set the decrypted memory region as Read + Execute, and subsequently executes the code at the memory pointer. This is clearly where the unpacked code containing the next stage will be placed.

Unpacking the malware

Understanding how the unpacking routine works is the first step. The next step is obtaining the actual code, which cannot be achieved through static analysis alone.

There are two viable methods to retrieve the next stage. The first method is implementing the unpacking routine from scratch in a language like Python and running it against the data file.

This is straightforward in this case, as the unpacking routine in relatively simple and would not require much effort to re-implement. However, many unpacking routines are far more complex, which leads to the second method: allowing the malware to unpack itself by debugging it and then capturing the result. This is the approach many analysts take to unpacking, and the following will document this method to unpack SnappyBee.

As SnappyBee is 32-bit Windows malware, debugging can be performed using x86dbg in a Windows sandbox environment to debug SnappyBee. It is essential this sandbox is configured correctly, because any mistake during debugging could result in executing malicious code, which could have serious consequences.

Before debugging, it is necessary to disable the DYNAMIC_BASE flag on the DLL using a tool such as setdllcharacteristics. This will stop ASLR from randomizing the memory addresses each time the malware runs and ensures that it matches the addresses observed during static analysis.

The first place to set a breakpoint is DllMain, as this is the start of the malicious code and the logical place to pause before proceeding. Using IDA, the functions address can be determined; in this case, it is at offset 10002DB0. This can be used in the Goto (CTRL+G) dialog to jump to the offset and place a breakpoint. Note that the “Run to user code” button may need to be pressed if the DLL has not yet been loaded by x32dbg, as it spawns a small process to load the DLL as DLLs cannot be executed directly.

The program can then run until the breakpoint, at which point the program will pause and code recognizable from static analysis can be observed.

Figure 5: The x32dbg dissassembly listing forDllMain.

In the previous section, this function was noted as responsible for setting up a hook, and in the disassembly listing the hook address can be seen being loaded at offset 10002E1C. It is not necessary to go through the whole hooking process, because only the function that gets hooked in needs to be run. This function will not be naturally invoked as the DLL is being loaded directly rather than via sideloading as it expects. To work around this, the Extended Instruction Pointer (EIP) register can be manipulated to point to the start of the hook function instead, which will cause it to run instead of the DllMain function.

To update EIP, the CRTL+G dialog can again be used to jump to the hook function address (10002B50), and then the EIP register can be set to this address by right clicking the first instruction and selecting “Set EIP here”. This will make the hook function code run next.

Figure 6: The start of the hookedin-in function

Once in this function, there are a few addresses where breakpoints should be set in order to inspect the state of the program at critical points in the unpacking process. These are:

-              10002C93, which allocates the memory for the data file and final code

-              10002D2D, which decrypts the memory

-              10002D81, which runs the unpacked code

Setting these can be done by pressing the dot next to the instruction listing, or via the CTRL+G Goto menu.

At the first breakpoint, the call to VirtualAlloc will be executed. The function returns the memory address of the created memory region, which is stored in the EAX register. In this case, the region was allocated at address 00700000.

Figure 7: The result of the VirtualAlloc call.

It is possible to right click the address and press “Follow in dump” to pin the contents of the memory to the lower pane, which makes it easy to monitor the region as the unpacking process continues.

Figure 8: The allocated memory region shown in x32dbg’s dump.

Single-stepping through the application from this point eventually reaches the call to ReadFile, which loads the file into the memory region.

Figure 9: The allocated memory region after the file is read into it, showing high entropy data.

The program can then be allowed to run until the next breakpoint, which after single-stepping will execute the call to mbedtls_arc4_crypt to decrypt the memory. At this point, the data in the dump will have changed.

Figure 10: The same memory region after the decryption is run, showing lower entropy data.

Right-clicking in the dump and selecting "Disassembly” will disassemble the data. This yields valid shell code, indicating that the unpacking succeeded, whereas corrupt or random data would be expected if the unpacking had failed.

Figure 11: The disassembly view of the allocated memory.

Right-clicking and selecting “Follow in memory map” will show the memory allocation under the memory map view. Right-clicking this then provides an option to dump the entire memory block to file.

Figure 12: Saving the allocated memory region.

This dump can then be opened in IDA, enabling further static analysis of the shellcode. Reviewing the shellcode, it becomes clear that it performs another layer of unpacking.

As the debugger is already running, the sample can be allowed to execute up to the final breakpoint that was set on the call to the unpacked shellcode. Stepping into this call will then allow debugging of the new shellcode.

The simplest way to proceed is to single-step through the code, pausing on each call instruction to consider its purpose. Eventually, a call instruction that points to one of the memory regions that were assigned will be reached, which will contain the next layer of unpacked code. Using the same disassembly technique as before, it can be confirmed that this is more unpacked shellcode.

Figure 13: The unpacked shellcode’s call to RDI, which points to more unpacked shellcode. Note this screenshot depicts the 64-bit variant of SnappyBee instead of 32-bit, however the theory is the same.

Once again, this can be dumped out and analyzed further in IDA. In this case, it is the final payload used by the SnappyBee malware.

Conclusion

Unpacking remains one of the most common anti-analysis techniques and is a feature of most sophisticated malware from threat groups. This technique of in-memory decryption reduces the forensic “surface area” of the malware, helping it to evade detection from anti-malware solutions. This blog walks through one such example and provides practical knowledge on how to unpack malware for deeper analysis.

In addition, this blog has detailed several other techniques used by threat actors to evade analysis, such as DLL sideloading to execute code without arising suspicion, dynamic API resolving to bypass static heuristics, and multiple nested stages to make analysis challenging.

Malware such as SnappyBee demonstrates a continued shift towards highly modular and low-friction malware toolkits that can be reused across many intrusions and campaigns. It remains vital for security teams  to maintain the ability to combat the techniques seen in these toolkits when responding to infections.

While the technical details of these techniques are primarily important to analysts, the outcomes of this work directly affect how a Security Operations Centre (SOC) operates at scale. Without the technical capability to reliably unpack and observe these samples, organizations are forced to respond without the full picture.

The techniques demonstrated here help close that gap. This enables security teams to reduce dwell time by understanding the exact mechanisms of a sample earlier, improve detection quality with behavior-based indicators rather than relying on hash-based detections, and increase confidence in response decisions when determining impact.

Credit to Nathaniel Bill (Malware Research Engineer)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

SnappyBee Loader 1 - 25b9fdef3061c7dfea744830774ca0e289dba7c14be85f0d4695d382763b409b

SnappyBee Loader 2 - b2b617e62353a672626c13cc7ad81b27f23f91282aad7a3a0db471d84852a9ac          

SnappyBee Payload - 1a38303fb392ccc5a88d236b4f97ed404a89c1617f34b96ed826e7bb7257e296

References

[1] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[2] https://www.darktrace.com/blog/salty-much-darktraces-view-on-a-recent-salt-typhoon-intrusion

[3] https://learn.microsoft.com/en-us/windows/win32/dlls/dllmain#parameters

[4] https://mbed-tls.readthedocs.io/projects/api/en/v2.28.4/api/file/arc4_8h/#_CPPv418mbedtls_arc4_cryptP20mbedtls_arc4_context6size_tPKhPh

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

AI

/

February 4, 2026

The State of AI Cybersecurity 2026: Unveiling insights from over 1,500 security leaders

The State of AI Cybersecurity 2026Default blog imageDefault blog image

2025 was the year enterprise AI went mainstream. In 2026, it’s made its way into every facet of the organizational structure – transforming workflows, revolutionizing productivity, and creating new value streams. In short, it’s opened up a whole new attack surface.  

At the same time, AI has accelerated the pace of cybersecurity arms race on both sides: adversaries are innovating using the latest AI technologies at their disposal while defenders scramble to outmaneuver them and stay ahead of AI-powered threats.  

That’s why Darktrace publishes this research every year. The State of AI Cybersecurity 2026 provides an annual snapshot of how the AI threat landscape is shifting, where organizations are adopting AI to maximum advantage, and how they are securing AI in the enterprise.

What is the State of AI Cybersecurity 2026?

We surveyed over 1,500 CISOs, IT leaders, administrators, and practitioners from a range of industries and different countries to uncover their attitudes, understanding, and priorities when it comes to AI threats, agents, tools, and operations in 2026. ​

The results show a fast-changing picture, as security leaders race to navigate the challenges and opportunities at play. Since last year, there has been enormous progress towards maturity in areas like AI literacy and confidence in AI-powered defense, while issues around AI governance remain inconclusive.

Let’s look at some of the key findings for 2026.

What’s the impact of AI on the attack surface?

Security leaders are seeing the adoption of AI agents across the workforce, and are increasingly concerned about the security implications.

  • 44% are extremely or very concerned with the security implications of third-party LLMs (like Copilot or ChatGPT)
  • 92% are concerned about the use of AI agents across the workforce and their impact on security

The rapid expansion of generative AI across the enterprise is outpacing the security frameworks designed to govern it. AI systems behave in ways that traditional defenses are not designed to monitor, introducing new risks around data exposure, unauthorized actions, and opaque decision-making as employees embed generative AI and autonomous agents into everyday workflows.  

Their top concerns? Sensitive data exposure ranks top (61%), while regulatory compliance violations are a close second (56%). These risks tend to have the fastest and most material fallout – ranging from fines to reputational harm – and are more likely to materialize in environments where AI governance is still evolving.

What’s the impact of AI on the cyber threat landscape?

AI is now being used to expedite every stage of the attack kill chain – from initial intrusion to privilege escalation and data exfiltration. 

“73% say that AI-powered threats are already having a significant impact on their organization.”

With AI, attackers can launch novel attacks at scale, and this is significantly increasing the number of threats requiring attention by the security team – often to the point of overwhelm.  

Traditional security solutions relying on historical attack data were never designed to handle an environment where attacks continuously evolve, multiply, and optimize at machine speed, so it’s no surprise that 92% agree that AI-powered cyber-threats are forcing them to significantly upgrade their defenses.

How is AI reshaping cybersecurity operations?

Cybersecurity workflows are still in flux as security leaders get used to the integration of AI agents into everyday operations.  

“Generative AI is now playing a role in 77% of security stacks.” But only 35% are using unsupervised machine learning.

AI technologies are diverse, ranging from LLMs to NLP systems, GANs, and unsupervised machine learning, with each type offering specific capabilities and facing particular limitations. The lack of familiarity with the different types of AI used within the security stack may be holding some practitioners back from using these new technologies to their best advantage.  

It also creates a lack of trust between humans and AI systems: only 14% of security professionals allow AI to take independent remediation actions in the SOC with no human in the loop.

Another new trend for this year is a strong preference (85%) for relying on Managed Security Service Providers (MSSPs) for SOC services instead of in-house teams, as organizations aim to secure expert, always-on support without the cost and operational burden of running an internal operation.

What impact is AI having on cybersecurity tools?

“96% of cybersecurity professionals agree that AI can significantly improve the speed and efficiency with which they work.”

The capacity of AI for augmenting security efforts is undisputed. But as vendor AI claims become far-reaching, it falls to security leaders to clarify which AI tools offer true value and can help solve their specific security challenges.  

Security professionals are aligned on the biggest area of impact: 72% agree that AI excels at detecting anomalies thanks to its advanced pattern recognition. This enables it to identify unusual behavior that may signal a threat, even when the specific attack has never been encountered or recorded in existing datasets.  

“When purchasing new security capabilities, 93% prefer ones that are part of a broader platform over individual point products.”

Like last year, the drive towards platform consolidation remains strong. Fewer vendors can mean tighter integrations, less console switching, streamlined management, and stronger cross-domain threat insights. The challenge is finding vendors that perform well across the board.

See the full report for more statistics and insights into how security leaders are responding to the AI landscape in 2026.

Learn more about securing AI in your enterprise.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI