ブログ
/
OT
/
February 9, 2022

The Impact of Conti Ransomware on OT Systems

Learn how ransomware can spread throughout converged IT/OT environments, and how Self-Learning AI empowers organizations to contain these threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2022

Ransomware has taken the world by storm, and IT is not the only technology affected. Operational Technology (OT), which is increasingly blending with IT, is also susceptible to ransomware tactics, techniques, and procedures (TTPs). And when ransomware strikes OT, the effects have the potential to be devastating.

Here, we will look at a ransomware attack that spread from IT to OT systems. The attack was detected by Darktrace AI.

This threat find demonstrates a use case of Darktrace’s technology that delivers immense value to organizations with OT: spotting and stopping ransomware at its earliest stages, before the damage is done. This is particularly helpful for organizations with interconnected enterprise and industrial environments, as it means:

  1. Emerging attacks can be contained in IT before they spread laterally into OT, and even before they spread from device to device in IT;
  2. Organizations gain granular visibility into their industrial environments, detecting deviations from normal activity, and quick identification of remediating actions.

Threat find: Ransomware and crypto-mining hijack affecting IT and OT systems

Darktrace recently identified an aggressive attack targeting an OT R&D investment firm in EMEA. The attack originally started as a crypto-mining campaign and later evolved into ransomware. This organization deployed Darktrace in a digital estate containing both IT and OT assets that spanned over 3,000 devices.

If the organization had deployed Darktrace’s Autonomous Response technology in active mode, this threat would have been stopped in its earliest stages. Even in the absence of Autonomous Response, however, mere human attention would have stopped this attack’s progression. Darktrace’s Self-Learning AI gave clear indications of an ongoing compromise in the month prior to the detonation of ransomware. In this case, however, the security team was not monitoring Darktrace’s interface, and so the attack was allowed to proceed.

Compromised OT devices

This threat find will focus on the attack techniques used to take over two OT devices, specifically, a HMI (human machine interface), and an ICS Historian used to collect and log industrial data. These OT devices were both VMware virtual machines running Windows OS, and were compromised as part of a wider Conti ransomware infection. Both devices were being used primarily within an industrial control system (ICS), running a popular ICS software package and making regular connections to an industrial cloud platform.

These devices were thus part of an ICSaaS (ICS-as-a-Service) environment, using virtualised and Cloud platforms to run analytics, update threat intelligence, and control the industrial process. As previously highlighted by Darktrace, the convergence of cloud and ICS increases a network’s attack surface and amplifies cyber risk.

Attack lifecycle

Opening stages

The initial infection of the OT devices occurred when a compromised Domain Controller (DC) made unusual Active Directory requests. The devices made subsequent DCE-RPC binds for epmapper, often used by attackers for command execution, and lsarpc, used by attackers to abuse authentication policies and escalate privileges.

The payload was delivered when the OT devices used SMB to connect to the sysvol folder on the DC and read a malicious executable file, called SetupPrep.exe.

Figure 1: Darktrace model breaches across the whole network from initial infection on October 21 to the detonation on November 15.

Figure 2: ICS reads on the HMI in the lead up, during, and following detonation of the ransomware.

Device encryption and lateral spread

The malicious payload remained dormant on the OT devices for three weeks. It seems the attacker used the time to install crypto-mining malware elsewhere on the network and consolidate their foothold.

On the day the ransomware detonated, the attacker used remote management tools to initiate encryption. The PSEXEC tool was used on an infected server (separate from the original DC) to remotely execute malicious .dll files on the compromised OT devices.

The devices then attempted to make command and control (C2) connections to rare external endpoints using suspicious ports. Like in many ICS networks, sufficient network segregation had been implemented to prevent the HMI device from making successful connections to the Internet and the C2 communications failed. But worryingly, the failed C2 did not prevent the attack from proceeding or the ransomware from detonating.

The Historian device made successful C2 connections to around 40 unique external endpoints. Darktrace detected beaconing-type behavior over suspicious TCP/SSL ports including 465, 995, 2078, and 2222. The connections were made to rare destination IP addresses that did not specify the Server Name Indication (SNI) extension hostname and used self-signed and/or expired SSL certificates.

Both devices enumerated network SMB shares and wrote suspicious shell scripts to network servers. Finally, the devices used SMB to encrypt files stored in network shares, adding a file extension which is likely to be unique to this victim and which will be called ABCXX for the purpose of this blog. Most encrypted files were uploaded to the folder in which the file was originally located, but in some instances were moved to the images folder.

During the encryption, the device was using the machine account to authenticate SMB sessions. This is in contrast to other ransomware incidents that Darktrace has observed, in which admin or service accounts are compromised and abused by the attacker. It is possible that in this instance the attacker was able to use ‘Living off the Land’ techniques (for example the use of lsarpc pipe) to give the machine account admin privileges.

Examples of files being encrypted and moved:

  • SMB move success
  • File: new\spbr0007\0000006A.bak
  • Renamed: new\spbr0007\0000006A.bak.ABCXX
  • SMB move success
  • File: ActiveMQ\readme.txt
  • Renamed: Images\10j0076kS1UA8U975GC2e6IY.488431411265952821382.png.ABCXX

Detonation of ransomware

Upon detonation, the ransomware note readme.txt was written by the ICS to targeted devices as part of the encryption activity.

The final model breached by the device was “Unresponsive ICS Device” as the device either stopped working due to the effects of the ransomware, or was removed from the network.

Figure 3: abc-histdev — external connections filtered on destination port 995 shows C2 connections starting around one hour before encryption began.

How the attack bypassed the rest of the security stack

In this threat find, there were a number of factors which resulted in the OT devices becoming compromised.

The first is IT/OT convergence. The ICS network was insufficiently segregated from the corporate network. This means that devices could be accessed by the compromised DC during the lateral movement stage of the attack. As OT becomes more reliant on IT, ensuring sufficient segregation is in place, or that an attacker can not circumvent such segregation, is becoming an ever increasing challenge for security teams.

Another reason is that the attacker used attack methods which leverage Living off the Land techniques to compromise devices with no discrimination as to whether they were part of an IT or OT network. Many of the machines used to operate ICS networks, including the devices highlighted here, rely on operating systems vulnerable to the kinds of TTPs observed here and that are regularly employed by ransomware groups.

Darktrace insights

Darktrace’s Cyber AI Analyst was able to stitch together many disparate forms of unusual activity across the compromised devices to give a clear security narrative containing details of the attack. The incident report for the Historian server is shown below. This provides a clear illustration of how Cyber AI Analyst can close any skills or communication gap between IT and OT specialists.

Figure 4: Cyber AI Analyst of the Historian server (abc-histdev). It investigated and reported the C2 communication (step 2) that started just before network reconnaissance using TCP scanning (step 3) and the subsequent file encryption over SMB (step 4).

In total, the attacker’s dwell time within the digital estate was 25 days. Unfortunately, it lead to disruption to operational technology, file encryption and financial loss. Altogether, 36 devices were crypto-mining for over 20 days – followed by nearly 100 devices (IT and OT) becoming encrypted following the detonation of the ransomware.

If it were active, Autonomous Response would have neutralized this activity, containing the damage before it could escalate into crisis. Darktrace’s Self-Learning AI gave clear indications of an ongoing compromise in the month prior to the detonation of ransomware, and so any degree of human attention toward Darktrace’s revelations would have stopped the attack.

Autonomous Response is highly configurable, and so, in industrial environments — whether air-gapped OT or converged IT/OT ecosystems — Antigena can be deployed in a variety of manners. In human confirmation mode, human operators need to give the green light before the AI takes action. Antigena can also be deployed only in the higher levels of the Purdue model, or the “IT in OT,” protecting the core assets from fast-moving attacks like ransomware.

Ransomware and interconnected IT/OT systems

ICS networks are often operated by machines that rely on operating systems which can be affected by TTPs regularly employed by ransomware groups — that is, TTPs such as Living off the Land, which do not discriminate between IT and OT.

The threat that ransomware poses to organizations with OT, including critical infrastructure, is so severe that the Cyber Infrastructure and Security Agency (CISA) released a fact sheet concerning these threats in the summer of 2021, noting the risk that IT attacks pose to OT networks:

“OT components are often connected to information technology (IT) networks, providing a path for cyber actors to pivot from IT to OT networks… As demonstrated by recent cyber incidents, intrusions affecting IT networks can also affect critical operational processes even if the intrusion does not directly impact an OT network.”

Major ransomware attacks against the Colonial Pipeline and JBS Foods demonstrate the potential for ransomware affecting OT to cause severe economic disruption on a national and international scale. And ransomware can wreak havoc on OT systems regardless of whether they directly target OT systems.

As industrial environments continue to converge and evolve — be they IT/OT, ICSaaS, or simply poorly segregated legacy systems — Darktrace stands ready to contain attacks before the damage is done. It is time for organizations with industrial environments to take the quantum leap forward that Darktrace’s Self-Learning AI is uniquely positioned to provide.

Thanks to Darktrace analysts Ash Brice and Andras Balogh for their insights on the above threat find.

Discover more on how Darktrace protects OT environments from ransomware

Darktrace model detections

HMI in chronological order at time of detonation:

  • Anomalous Connection / SMB Enumeration
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • ICS / Unusual Data Transfer By OT Device
  • ICS / Unusual Unresponsive ICS Device

Historian

  • ICS / Rare External from OT Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • ICS / Unusual Activity From OT Device
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / SMB Access Failures
  • Device / Large Number of Model Breaches
  • ICS / Unusual Data Transfer By OT Device
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Device / SMB Lateral Movement
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • Device / Multiple Lateral Movement Model Breaches [Enhanced Monitoring]

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Network

/

November 12, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI