Blog
/
/
March 18, 2020

5 Security Risks Companies Face Transitioning to Remote Work

Discover 5 security risks companies face with remote work employees. Protect against email scams, weakened security controls, errors, and insider threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Tsonchev
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Mar 2020

As we all adjust to working remotely, security teams across the world are grappling with a very serious challenge. Almost overnight our companies have changed. Well established procedures are being rewritten, best practices quickly rethought, and policies stretched to breaking point.

Business transformation is always a security risk. New technology and working practices need new security measures; but normally this risk is managed carefully, and over time. COVID-19 has not afforded us that luxury. For some businesses the scale and speed of this change will be unprecedented. It is also very public; attackers are aware of the situation and already exploiting it. Below are some of the most serious threats that security teams will face over the coming weeks.

1. Email scams

Change brings novelty, and novelty brings opportunity for scammers. In the last 48 hours, internal security teams will have been racing to roll out essential remote working tools. Links to download new software, changes to how we authenticate services. When you do not know what to expect, employee training on spotting social engineering goes out the window. Both employees and IT departments should be wary of unexpected calls and requests:

“Hi, I’m calling from IT, can you please read out your 2FA code to me to confirm that you have been transitioned to the new Duo system?”

“Hi, I’ve forgotten my O365 password, can you please email a reset code to my personal Gmail?”

Such requests may be legitimate and may need to be resolved outside normal channels. The onus will be on individuals to be cautious, apply common sense and validate as appropriate.

There will also be ample opportunity for spear phishers to impersonate third-parties and clients:

“Hi John, I need to reschedule our meeting next week to be remote. Please see the link below for an invite to the Zoom call.”

These risks will be exacerbated by the simultaneous relaxing of security controls in order to facilitate the use of non-standard web conferencing software and the sharing of files by email. Attackers will have both the opportunity and the means.

2. Weakened security controls

The weakening of security controls goes far beyond relaxing firewall rules and email policy. Many existing layers of security will not apply to remote workers. Employees suddenly taking their work computer home with them will find themselves stripped of protection as they trade the office network for their home Wi-Fi. Without internet proxy, NAC, IDS and NGFW, client devices will now be sitting exposed on potentially unsecured networks amongst potentially compromised devices. Endpoint security will have to bear the full brunt of protection.

Internal network security may be compromised as well; employees might need access to resources previously only accessible on a wired network in one location. To make it reachable over VPN, internal segmentation might need to be flattened. This will open the door to malware spread and lateral movement. Client certificate authentication protecting web services might need to be turned off to enable BYOD working for employees that don’t have a company laptop.

These changes must be scrupulously logged, and dependencies understood. The extra weight will have to be carried elsewhere: perhaps host AV policies can be tightened to compensate for lack of network protection, perhaps employee devices can be reconfigured to use a secure external DNS provider instead of the on-prem DNS server.

3. Attacks on remote-working infrastructure

Beyond the weakening of existing controls, spinning up new infrastructure will bring fresh risks. In January we saw a spate of attacks on web-facing Citrix infrastructure. Companies will be rapidly deploying VPN gateways, transitioning to Sharepoint and expanding their internet-facing perimeter. This rapidly increased attack surface will need monitoring and protecting. Security teams should be on heightened alert for brute force and server-side attacks. DDoS protection will also become more important than ever; for many companies this will be the first time that a DDoS attack could cripple their business by preventing remote workers from accessing services over the internet. We should expect to see a sharp rise in both of these forms of attack immediately.

4. Errors and creative solutions

“Put it in an S3 bucket.”

“Let’s use join.me instead.”

“I’ll send it to you over WeTransfer.”

Both IT, and individual employees, will face blockers. There won’t be an authorized solution for their needs, and those needs may well be extremely urgent. At a time when businesses are extremely worried about their financial position and ability to operate, there will be pressure to throw caution to the wind and protect ‘business as usual’. This pressure may even come from the top. Security leadership must do the best they can to both push back against rash decisions and provide creative solutions.

Well-meaning employees will get creative, and responsibility will be delegated to team leaders to “do what it takes”. It may be impossible for security to police this centrally but monitoring vigilance will be required to spot risky behavior and non-compliance. This is easier said than done; the SOC will be asked to monitor for incidents in a sea of change. Existing use-cases and rules will not apply, and companies will need a more proactive and dynamic approach to detection and response.

5. Malicious insiders and malicious housemates

Unfortunately, there will be some within our companies that want to kick us while we are down. Sudden remote working is a godsend to malicious insiders. Data can now be easily taken from a company device over USB within the privacy of their own home. Security monitoring may be crippled or disabled entirely. This risk is harder to address. It may not be eliminable, but it can be balanced against the need for productivity and access to data.

We should also be wary of those around us. We all hope we can trust the people we live with. But from a company perspective, employee homes are zero-trust environments. Confidential conversations will now be conducted within range of eavesdroppers. Intellectual property will be visible on screens and monitors in living rooms around the world. This risk is greater for younger demographics likely to be house-sharing, but it remains for all workers; delivery personnel, visitors to the house – they could all potentially steal a company laptop from the kitchen room table. Education of employees in particular risk groups will be key.

Finding direction in a sea of digital change

All of the above changes and risks create a monitoring nightmare for SOCs. We are entering into a period of digital unknown, where change will be the new normal. Data flows and topology will change. New technology and services will be deployed. Logging formats will be different. The SIEM use-cases that took 12 months to develop will need to be scrapped overnight. For the next few weeks, business practice will shift rapidly.

Static defenses and rules will not be able to keep up, no matter how diligently and rapidly we rewrite them. How will you spot a malicious login attempt to O365 in your audit logs now that connections are coming from thousands of different locations around the world? Companies need to leverage technology that can allow them to continue to operate amidst uncertainty without choking productivity at this critical time. More critical still, containing those threats is of paramount importance – it won’t be feasible to entirely quarantine an infected machine if it cannot be re-imaged or replaced for days.

AI systems that can continuously evolve and adapt to change will provide the best chance of detecting misconfigurations, attacks, and risky behavior – when you don’t know what to look for, you need technology that is able to identify patterns and quantify risks for you. Autonomous Response technology can also surgically intervene to halt malicious activity when teams can’t be there to stop it, protecting devices and systems whilst allowing essential operations to continue unaffected.

Evolutions: Meeting the challenge head-on

Confronting these threats will not be easy. It will require a mixture of hard work, creativity, and new technology, alongside an openness to new ways of working and a willingness to embrace dynamic, proactive defense, instead of traditional rigid policies. However, placing trust in defensive systems to autonomously protect employees will be the single most effective way of maintaining resilience and security when our static defenses have failed us.

At Darktrace we are working hard to help our customers get even more value from their Cyber AI platform throughout this difficult time, and ease workloads of busy security teams. We know that with the right tools and technologies – from Autonomous Response and Cyber AI Analyst, through to the Darktrace Mobile App – these teams will be able to navigate these stormy waters. In this unprecedented period of uncertainty, the need for security that evolves in step with your changing digital business has never been greater.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Tsonchev
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI