Blog
/
AI
/
August 22, 2022

Emotet Resurgence: Cross-Industry Analysis

Technical insights on the Emotet resurgence in 2022 across various client environments, industries, and regions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Eugene Chua
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Aug 2022

Introduction

Last year provided further evidence that the cyber threat landscape remains both complex and challenging to predict. Between uncertain attribution, novel exploits and rapid malware developments, it is becoming harder to know where to focus security efforts. One of the largest surprises of 2021 was the re-emergence of the infamous Emotet botnet. This is an example of a campaign that ignored industry verticals or regions and seemingly targeted companies indiscriminately. Only 10 months after the Emotet takedown by law enforcement agencies in January, new Emotet activities in November were discovered by security researchers. These continued into the first quarter of 2022, a period which this blog will explore through findings from the Darktrace Threat Intel Unit. 

Dating back to 2019, Emotet was known to deliver Trickbot payloads which ultimately deployed Ryuk ransomware strains on compromised devices. This interconnectivity highlighted the hydra-like nature of threat groups wherein eliminating one (even with full-scale law enforcement intervention) would not rule them out as a threat nor indicate that the threat landscape would be any more secure. 

When Emotet resurged, as expected, one of the initial infection vectors involved leveraging existing Trickbot infrastructure. However, unlike the original attacks, it featured a brand new phishing campaign.

Figure 1: Distribution of observed Emotet activities across Darktrace deployments

Although similar to the original Emotet infections, the new wave of infections has been classified into two categories: Epochs 4 and 5. These had several key differences compared to Epochs 1 to 3. Within Darktrace’s global deployments, Emotet compromises associated to Epoch 4 appeared to be the most prevalent. Affected customer environments were seen within a large range of countries (Figure 1) and industry verticals such as manufacturing and supply chain, hospitality and travel, public administration, technology and telecoms and healthcare. Company demographics and size did not appear to be a targeting factor as affected customers had varying employee counts ranging from less than 250, to over 5000.

Key differences between Epochs 1-3 vs 4-5

Based on wider security research into the innerworkings of the Emotet exploits, several key differences were identified between Epochs 4/5 and its predecessors. The newer epochs used:

·       A different Microsoft document format (OLE vs XML-based).

·       A different encryption algorithm for communication. The new epochs used Elliptic Curve Cryptograph (ECC) [1] with public encryption keys contained in the C2 configuration file [2]. This was different from the previous Rivest-Shamir-Adleman (RSA) key encryption method.

·       Control Flow Flattening was used as an obfuscation technique to make detection and reverse engineering more difficult. This is done by hiding a program’s control flow [3].

·       New C2 infrastructure was observed as C2 communications were directed to over 230 unique IPs all associated to the new Epochs 4 and 5.

In addition to the new Epoch 4 and 5 features, Darktrace detected unsurprising similarities in those deployments affected by the renewed campaign. This included self-signed SSL connections to Emotet’s new infrastructure as well as malware spam activities to multiple rare external endpoints. Preceding these outbound communications, devices across multiple deployments were detected downloading Emotet-associated payloads (algorithmically generated DLL files).

Emotet Resurgence Campaign

Figure 2: Darktrace’s Detection Timeline for Emotet Epoch 4 and 5 compromises

1. Initial Compromise

The initial point of entry for the resurgence activity was almost certainly via Trickbot infrastructure or a successful phishing attack (Figure 2). Following the initial intrusion, the malware strain begins to download payloads via macro-ladened files which are used to spawn PowerShell for subsequent malware downloads.

Following the downloads, malicious communication with Emotet’s C2 infrastructure was observed alongside activities from the spam module. Within Darktrace, key techniques were observed and documented below.

2. Establish Foothold: Binary Dynamic-link library (.dll) with algorithmically generated filenames 

Emotet payloads are polymorphic and contain algorithmically generated filenames . Within deployments, HTTP GET requests involving a suspicious hostname, www[.]arkpp[.]com, and Emotet related samples such as those seen below were observed:

·       hpixQfCoJb0fS1.dll (SHA256 hash: 859a41b911688b00e104e9c474fc7aaf7b1f2d6e885e8d7fbf11347bc2e21eaa)

·       M0uZ6kd8hnzVUt2BNbRzRFjRoz08WFYfPj2.dll (SHA256 hash: 9fbd590cf65cbfb2b842d46d82e886e3acb5bfecfdb82afc22a5f95bda7dd804)

·       TpipJHHy7P.dll (SHA256 hash: 40060259d583b8cf83336bc50cc7a7d9e0a4de22b9a04e62ddc6ca5dedd6754b)

These DLL files likely represent the distribution of Emotet loaders which depends on windows processes such as rundll32[.]exe and regsvr32[.]exe to execute. 

3. Establish Foothold: Outbound SSL connections to Emotet C2 servers 

A clear network indicator of compromise for Emotet’s C2 communication involved self-signed SSL using certificate issuers and subjects which matched ‘CN=example[.]com,OU=IT Department,O=Global Security,L=London,ST=London,C=GB’ , and a common JA3 client fingerprint (72a589da586844d7f0818ce684948eea). The primary C2 communications were seen involving infrastructures classified as Epoch 4 rather than 5. Despite encryption in the communication content, network contextual connection details were sufficient for the detection of the C2 activities (Figure 3).

Figure 3: UI Model Breach logs on download and outbound SSL activities.

Outbound SSL and SMTP connections on TCP ports 25, 465, 587 

An anomalous user agent such as, ‘Microsoft Outlook 15.0’, was observed being used for SMTP connections with some subject lines of the outbound emails containing Base64-encoded strings. In addition, this JA3 client fingerprint (37cdab6ff1bd1c195bacb776c5213bf2) was commonly seen from the SSL connections. Based on the set of malware spam hostnames observed across at least 10 deployments, the majority of the TLDs were .jp, .com, .net, .mx, with the Japanese TLD being the most common (Figure 4).

Figure 4: Malware Spam TLDs observed in outbound SSL and SMTP

 Plaintext spam content generated from the spam module were seen in PCAPs (Figure 5). Examples of clear phishing or spam indicators included 1) mismatched personal header and email headers, 2) unusual reply chain and recipient references in the subject line, and 3) suspicious compressed file attachments, e.g. Electronic form[.]zip.

Figure 5: Example of PCAP associated to SPAM Module

4. Accomplish Mission

 The Emotet resurgence also showed through secondary compromises involving anomalous SMB drive writes related to CobaltStrike. This consistently included the following JA3 hash (72a589da586844d7f0818ce684948eea) seen in SSL activities as well as SMB writes involving the svchost.exe file.

Darktrace Detection

 The key DETECT models used to identify Emotet Resurgence activities were focused on determining possible C2. These included:

·       Suspicious SSL Activity

·       Suspicious Self-Signed SSL

·       Rare External SSL Self-Signed

·       Possible Outbound Spam

File-focused models were also beneficial and included:

·       Zip or Gzip from Rare External Location

·       EXE from Rare External Location

Darktrace’s detection capabilities can also be shown through a sample of case studies identified during the Threat Research team’s investigations.

Case Studies 

Darktrace’s detection of Emotet activities was not limited by industry verticals or company sizing. Although there were many similar features seen across the new epoch, each incident displayed varying techniques from the campaign. This is shown in two client environments below:

When investigating a large customer environment within the public administration sector, 16 different devices were detected making 52,536 SSL connections with the example[.]com issuer. Devices associated with this issuer were mainly seen breaching the same Self-Signed and Spam DETECT models. Although anomalous incoming octet-streams were observed prior to this SSL, there was no clear relation between the downloads and the Emotet C2 connections. Despite the total affected devices occupying only a small portion of the total network, Darktrace analysts were able to filter against the much larger network ‘noise’ and locate detailed evidence of compromise to notify the customer.

Darktrace also identified new Emotet activities in much smaller customer environments. Looking at a company in the healthcare and pharmaceutical sector, from mid-March 2022 a single internal device was detected making an HTTP GET request to the host arkpp[.]com involving the algorithmically-generated DLL, TpipJHHy7P.dll with the SHA256 hash: 40060259d583b8cf83336bc50cc7a7d9e0a4de22b9a04e62ddc6ca5dedd6754b (Figure 6). 

Figure 6: A screenshot from VirusTotal, showing that the SHA256 hash has been flagged as malicious by other security vendors.

After the sample was downloaded, the device contacted a large number of endpoints that had never been contacted by devices on the network. The endpoints were contacted over ports 443, 8080, and 7080 involving Emotet related IOCs and the same SSL certificate mentioned previously. Malware spam activities were also observed during a similar timeframe.

 The Emotet case studies above demonstrate how autonomous detection of an anomalous sequence of activities - without depending on conventional rules and signatures - can reveal significant threat activities. Though possible staged payloads were only seen in a proportion of the affected environments, the following outbound C2 and malware spam activities involving many endpoints and ports were sufficient for the detection of Emotet.

 If present, in both instances Darktrace’s Autonomous Response technology, RESPOND, would recommend or implement surgical actions to precisely target activities associated with the staged payload downloads, outgoing C2 communications, and malware spam activities. Additionally, restriction to the devices’ normal pattern of life will prevent simultaneously occurring malicious activities while enabling the continuity of normal business operations.

 Conclusion 

·       The technical differences between past and present Emotet strains emphasizes the versatility of malicious threat actors and the need for a security solution that is not reliant on signatures.

·       Darktrace’s visibility and unique behavioral detection continues to provide visibility to network activities related to the novel Emotet strain without reliance on rules and signatures. Key examples include the C2 connections to new Emotet infrastructure.

·       Looking ahead, detection of C2 establishment using suspicious DLLs will prevent further propagation of the Emotet strains across networks.

·       Darktrace’s AI detection and response will outpace conventional post compromise research involving the analysis of Emotet strains through static and dynamic code analysis, followed by the implementation of rules and signatures.

Thanks to Paul Jennings and Hanah Darley for their contributions to this blog.

Appendices

Model breaches

·       Anomalous Connection / Anomalous SSL without SNI to New External 

·       Anomalous Connection / Application Protocol on Uncommon Port 

·       Anomalous Connection / Multiple Connections to New External TCP Port 

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint 

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·       Anomalous Connection / Possible Outbound Spam 

·       Anomalous Connection / Rare External SSL Self-Signed 

·       Anomalous Connection / Repeated Rare External SSL Self-Signed      

·       Anomalous Connection / Suspicious Expired SSL 

·       Anomalous Connection / Suspicious Self-Signed SSL

·       Anomalous File / Anomalous Octet Stream (No User Agent) 

·       Anomalous File / Zip or Gzip from Rare External Location 

·       Anomalous File / EXE from Rare External Location

·       Compromise / Agent Beacon to New Endpoint 

·       Compromise / Beacon to Young Endpoint 

·       Compromise / Beaconing Activity To External Rare 

·       Compromise / New or Repeated to Unusual SSL Port 

·       Compromise / Repeating Connections Over 4 Days 

·       Compromise / Slow Beaconing Activity To External Rare 

·       Compromise / SSL Beaconing to Rare Destination 

·       Compromise / Suspicious Beaconing Behaviour 

·       Compromise / Suspicious Spam Activity 

·       Compromise / Suspicious SSL Activity 

·       Compromise / Sustained SSL or HTTP Increase 

·       Device / Initial Breach Chain Compromise 

·       Device / Large Number of Connections to New Endpoints 

·       Device / Long Agent Connection to New Endpoint 

·       Device / New User Agent 

·       Device / New User Agent and New IP 

·       Device / SMB Session Bruteforce 

·       Device / Suspicious Domain 

·       Device / Suspicious SMB Scanning Activity 

For Darktrace customers who want to know more about using Darktrace to triage Emotet, refer here for an exclusive supplement to this blog.

References

[1] https://blog.lumen.com/emotet-redux/

[2] https://blogs.vmware.com/security/2022/03/emotet-c2-configuration-extraction-and-analysis.html

[3] https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Eugene Chua
Cyber Security Analyst

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI