Blog
/

Threat Finds

Inside the SOC

/
July 19, 2021

Data Exfiltration Trends in Latin America

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Jul 2021
Darktrace reveals key findings on data exfiltration in Latin America. Discover the latest cyber threats and defense strategies.

Data exfiltration is a popular enterprise for cyber-criminals. All organizations – from government agencies to small businesses – have sensitive data which can be stolen for extortion, competitive advantage, or further inroads in a company’s system. It is now the preferred technique of ransomware actors. Some Ransomware-as-a-Service (RaaS) groups have even pioneered a new type of ‘extortionware’, which focuses solely on data theft without encryption.

Easy money

At a pharmaceutical manufacturing institute in Latin America, Darktrace recently detected the exfiltration of critical files from the company, as this blog will explore.

The organization was an enticing target for two reasons. Firstly, pharmaceutical companies hold a wealth of valuable IP and patient data, which have come under sustained fire this last year as threat actors and nation states infiltrate vaccine research and distribution.

#1 most affected industry for data breaches: pharmaceuticals.

Secondly, Latin America is a treasure trove for cyber-criminals, thanks to huge economic growth in recent years, the digitization of major industries, alongside sub-standard cyber insurance policies and virtually nonexistent regulations.

Even before the COVID-19 pandemic, Brazil and Mexico were in Europol’s top ten affected countries. Since then, cases have skyrocketed – and many companies remain underprepared, facing limited support and pressure from government bodies. Strikingly, even though it has suffered estimated losses of almost $8 billion, Brazil still has no data protection law in place.

On top of financial crimes, the LATAM region has been targeted by state-sponsored groups linked to Russia, China, and Iran. Cyber-espionage is used as a method to gain the upper hand in negotiations and advance foreign interests in investment and trade.

Furthermore, as supply chains in the criminal world are hit by the effects of the pandemic, organized crime may begin to leverage the digital world – particularly fraud and phishing – as a possible source of income. La Familia Michoacana, a notorious drug cartel in Mexico, has reportedly begun enlisting Dark Web hackers.

Despite the number of threats facing Latin America, organizations have been slow to adopt defensive technology. So when the attacker in the case below chose a small organization in the LATAM region, they probably expected to face only signature-based, legacy security tools. Sensing that this would be easy prey – with little resistance and large profit to be made – the actor launched their first steps.

How the intrusion played out

During a Proof of Value trial with the company, Darktrace detected unusual activity from a server, following external remote connectivity.

Figure 1: Timeline of the attack.

The attack began when an internal server received an unusual connection over RDP from an external IP. The connection lasted five hours. The external IP then established a new SMB session to the same server using administrative credentials. The external IP leveraged SMB to access a file, which appeared to contain unencrypted passwords.

65% of the Colombian population now use the Internet, compared to only 3% in 2000.

From there, the external IP downloaded over 18,000 files over SMB. Based on the file names, it appears that the data was highly sensitive. In total, the external IP downloaded around 150 MB of data from the internal server.

Unusual activity post remote connections

Self-Learning AI detected that the IP address was 100% rare for the organization and server. The data transfer was also detected as unusual for the device’s ‘pattern of life’. Unfortunately, as Antigena was being trialled in passive mode, Darktrace could not intervene and disrupt the attack.

Nevertheless, Darktrace fired a number of high-confidence alerts to warn the security team. The figure below shows five-day activity from an example device in the same situation, with a high volume of clustered alerts. These reflect the unusual increase in volume transferred externally from a breach device.

Figure 2: A similar device received an incoming remote desktop connection, highlighted by the first model breach (orange dot). Shortly after, the external device accessed an unencrypted password file. At the same time, the device transferred an unusual volume of data to a rare external source IP.

Data exfiltration methods: RDP and password file access

The threat actor managed to bypass all the other existing security products in the company. They did this with legitimate administrative credentials, which were used to establish the RDP and SMB connections. RDP credentials are easily bought off the Dark Web and have proved a popular form of initial access, especially this year as employees continue to work remotely.

In addition, improper password management can unlock an organization’s digital kingdom. One of the accessed files was a password file, enabling the actor to quickly escalate privileges. After this point, only an AI-powered defensive tool could keep up with the speed of the intrusion.

Leveraging common protocols such as SMB to exfiltrate data is a common tactic. Internet-exposed servers are still a major risk to organizations as attackers exploit open and unused ports.

Moreover, the files transferred during the activity were saved as receipts with the names of partners and customers. This is extremely dangerous and could have put the company’s reputation at serious risk. Luckily, Self-Learning AI detected the malicious actions and warned the security team immediately, allowing them to stop further exfiltration and any follow-up activity.

Protecting sensitive data

The example above demonstrates that even the smallest of companies can fall victim to an attack. Small and medium-sized enterprises are targeted because they own important data and IP, yet often lack robust security and resources. This makes them simple catches compared to large establishments or governments.

Darktrace’s AI has the ability to detect malicious data exfiltration from subtle changes in behavior. In this case, the targeted server regularly transfers data in and out of the organization, yet Darktrace scored the incoming external IP with the highest rarity. In other words, Darktrace considered the data transfer activity highly unusual and outside of the server’s normal ‘pattern of life’.

This enabled the security team to respond to the threat and take the server offline for further investigation. If Darktrace Antigena had been active in the environment, it would have responded seconds after the initial compromise, stopping the threat at machine speed.

Thanks to Darktrace analyst Kendra Gonzalez Duran for her insights on the above threat find.

Learn how to defend your company from data exfiltration and malicious insiders

Darktrace model detections:

  • Compliance / Incoming Remote Desktop
  • Compliance / Possible Unencrypted Password File On Server
  • Anomalous Connection/ Data Sent to Rare Domain

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 13, 2025

/

Cloud

Agent vs. Agentless cloud security: Why deployment methods matter

Default blog imageDefault blog image

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

January 10, 2025

/

Inside the SOC

Detecting and mitigating adversary-in-the-middle phishing attacks with Darktrace Services

Default blog imageDefault blog image

What is an Adversary-in-the-Middle Attack?

Threat actors are increasingly utilizing advanced phishing toolkits and techniques to carry out Adversary-in-the-Middle (AitM) attacks. These attacks involve the use of a proxy to a legitimate service, where the attacker’s webpage mimics the expected site. While the victim believes they are visiting the legitimate site, they are actually interacting with the attacker’s device, allowing the malicious actor to monitor all interactions and control the authenticated session, ultimately gaining access to the user’s account [1][2].

This blog will explore how Darktrace detected AitM techniques being leveraged in a Business Email Compromise (BEC) attack that used the widely used and trusted cloud storage service, Dropbox, for delivery. Dropbox’s popularity has made it a prime target for attackers to exploit in recent years. Threat actors can exploit the service for various malicious activities, including distributing malware and exposing sensitive information.

Attack Overview

In these types of AitM BEC attacks, recipients are often targeted with Dropbox-related emails, featuring subject headings like ‘FirstLast shared "Filename" with you,’ which suggest an individual is sharing an invoice-related attachment. These email subjects are common in such attacks, as threat actors attempt to encourage victims to access Dropbox links by masquerading them as legitimate files.

While higher priority users are, of course, targeted, the scope of these attacks remains broad. For instance, if a lower priority user is targeted by a phishing attack or their token is stolen, an attacker can still attempt BEC for further malicious intent and financial gain.

In October 2024, a Darktrace customer received a phishing email from a seemingly legitimate Dropbox address. This email originated from the IP, 54.240.39[.]219 and contained multiple link payloads to Dropbox-related hostnames were observed, inviting the user to access a file. Based on anomaly indicators and detection by Darktrace / EMAIL, Darktrace recognized that one of the payloads was attempting to abuse a legitimate cloud platform to share files or other unwanted material with the recipient.

Figure 1: Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.

Following the recipient’s engagement with this email, Darktrace / IDENTITY identified a series of suspicious activities within the customer’s environment.

AitM attacks allow threat actors to bypass multi-factor authentication (MFA). Initially, when a user is phished, the malicious infrastructure captures both the user’s credentials and the token. This includes replaying a token issued to user that has already completed the MFA requirement, allowing the threat actor to satisfy the validity of the requirement and gain access to sensitive organizational resources. Darktrace is able to analyze user activity and authentication patterns to determine whether MFA requirements were met. This capability helps verify and indicate token theft via AitM.

Darktrace observed the associated user account making requests over Microsoft 365 from the IP 41.90.175[.]46. Given the unusual nature and rare geolocation based in Kenya, Africa, this activity did not appear indicative of legitimate business operations.

Figure 2: Geographical location of the SaaS user in relation to the source IP 41.90.175[.]46.

Further analysis using open-source intelligence (OSINT) revealed that the endpoint was likely associated with a call-back proxy network [3]. This suggested the presence of a network device capable of re-routing traffic and harvesting information.

Darktrace also detected that the same SaaS user was logging in from two different locations around the same time. One login was from a common, expected location, while the other was from an unusual location. Additionally, the user was observed registering security information using the Microsoft Authenticator app, indicating an attempt by an attacker to maintain access to the account by establishing a new method of MFA. This new MFA method could be used to bypass future MFA requirements, allowing the attacker to access sensitive material or carry out further malicious activities.

Figure 3: External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.

Ultimately, this anomalous behavior was escalated to the Darktrace Security Operations Centre (SOC) via the Managed Detection & Response service for prompt triage and investigation by Darktrace’s SOC Analysts who notified the customer of strong evidence of compromise.

Fortunately, since this customer had Darktrace enabled in Autonomous Response mode, the compromised SaaS account had already been disabled, containing the attack. Darktrace’s SOC elected to extend this action to ensure the malicious activity remained halted until the customer could take further remedial action.

Figure 4: Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.

Conclusion

AitM attacks can play a crucial role in BEC campaigns. These attacks are often part of multi-staged operations, where an initial AitM attack is leveraged to launch a BEC by delivering a malicious URL through a trusted vendor or service. Attackers often attempt to lay low on their target network, sometimes persisting for extended periods, as they monitor user accounts or network segments to intercept sensitive communications.

In this instance, Darktrace successfully identified and acted against AitM techniques being leveraged in a BEC attack that used Dropbox for delivery. While Dropbox is widely used for legitimate purposes, its popularity has also made it a target for exploitation by threat actors, who have used it for a variety of malicious purposes, including delivering malware and revealing sensitive information.

Darktrace’s Security Operations Support service, combined with its Autonomous Response technology, provided timely and effective mitigation. Dedicated Security Operations Support analysts triaged the incident and implemented preventative measures, ensuring the customer was promptly notified. Meanwhile, Darktrace swiftly disabled the compromised SaaS account, allowing the customer to take further necessary actions, such as resetting the user’s password.

This case highlights the capabilities of Darktrace’s solutions, enabling the customer to resume normal business operations despite the malicious activity.

Credit to Justin Torres (Senior Cyber Analyst), Stefan Rowe (Technical Director, SOC) and Ryan Traill (Analyst Content Lead)

Appendices

References

1.    https://www.proofpoint.com/us/threat-reference/man-in-the-middle-attack-mitm

2.    https://thehackernews.com/2024/08/how-to-stop-aitm-phishing-attack.html

3.    https://spur.us/context/41.90.175.46

Darktrace Model Detections

Darktrace / NETWORK Model Alert(s):

SaaS / Compromise::SaaS Anomaly Following Anomalous Login

SaaS / Unusual Activity::Multiple Unusual SaaS Activities

SaaS / Compromise::Unusual Login and Account Update

SaaS / Compromise::Login From Rare Endpoint While User Is Active

SaaS / Access::Unusual External Source for SaaS Credential Use

SaaS / Email Nexus::Unusual Login Location Following Link to File Storage

SaaS / Access::MailItemsAccessed from Rare Endpoint

Darktrace/Autonomous Response Model Alert(s):

Antigena / SaaS::Antigena Suspicious SaaS Activity Block

List of Indicators of Compromise (IoCs)

(IoC - Type - Description)

41.90.175[.]46 – Source IP Observed with Suspicious Login Behavior

MITRE ATT&CK Mapping

(Technique Name - Tactic - ID - Sub-Technique of)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Email Accounts - RESOURCE DEVELOPMENT - T1586.002 - T1586

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI