Blog
/
/
February 12, 2018

The Rise of Cryptocurrency Attacks & Cyber Defense Solutions

Darktrace can detect cryptocurrency-related attacks with machine learning. Identify nefarious use of resources and protect against Coinhive drive-by mining.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Feb 2018

Prelude

The last 12 months have shown tremendous volatility in the value of cryptocurrencies, of which Bitcoin is the most prominent example. At the start of 2017, Bitcoin lingered around the $2,000 mark before suddenly taking off, climbing to historic highs of close to $20,000 in December 2017. Demand has since subsided, and at the time of writing, the price of Bitcoin is near to $10,772.

While Bitcoin is the most popular cryptocurrency, numerous alternatives, often called ‘altcoins’ have emerged and grown in value in the last 12 months. For example, Dogecoin, originally created to be a spoof cryptocurrency after a widespread internet meme, reached a notable market capitalization milestone of $2bn in January 2018.

Nowadays it is almost impossible to profitably mine Bitcoin on commodity hardware such as laptops, smartphones or desktop computers. At this late state, it just takes too long to perform the relevant calculations, and the cost of electricity is higher than the anticipated revenue in most cases. Other altcoins such as Monero use different algorithms, making them viable alternatives for aspiring crypto miners. It is often still feasible to mine altcoins on commodity hardware and see a return on investment.

The value of most altcoins is closely tied to the value of Bitcoin and, in many cases, the relationship is broadly proportional – a rise in Bitcoin prompting a similar lift in the altcoins. Monero, which has been rapidly adopted by Darknet markets, has profited from this effect. While Monero was valued at around $10 in January 2017, its price has been pumped up to $419 a year later.

There is much that is still not clear about the cryptocurrency phenomenon. Debate as to its relative value and its status as a currency rages, and will not be resolved any time soon. However, from a cyber security perspective there can be no doubt that the combination of altcoins being mineable on commodity hardware, the fact that mining is now becoming profitable as a side-effect of Bitcoin’s rise, and a maturity in cryptocurrency-related tech has led to a surge in cryptocurrency-related attacks.

Attack vectors

Darktrace has observed an abrupt increase of cryptocurrency-related attacks over the last 12 months. Both the frequency and the diversity of these attacks has grown significantly and largely mirrors the remarkable rise in the value of Bitcoin over that period.

Previously, cyber-criminals monetized their operations via banking Trojans/credit card fraud, selling stolen data and ransomware on the Darknet. However, criminals are notoriously adaptable and will follow the money wherever it leads, leading to an increase in cryptojacking’s popularity.

Cryptocurrency mining might not be as profitable as ransomware is upfront, but it can be secretly pursued for months without creating the havoc that characterizes ransomware attacks. Most users and security products might not notice a cryptocurrency miner being installed on a corporate device as it does not show obvious threats or messages to a user, except for an occasional increase in CPU or RAM usage.

Identifying these attacks can be very difficult for traditional security tools as they were not originally designed to catch this type of threat. Nor was Darktrace, but its approach – which relies on its evolving understanding of patterns of behavior – means that it can detect such attacks without having to know what to look for in advance.

Darktrace has detected a number of different attack vectors related to cryptocurrency attacks.

  1. Nefarious use of corporate resources
    Darktrace has detected a range of incidents where employees were intentionally installing cryptocurrency mining software on their corporate devices to mine for personal gain. These employees do not have to pay for the electricity used to run the corporate device in the office – they are basically turning their employer’s electricity into cash by commandeering it for mining operations.

    This is commonly seen as a compliance breach and increases the attack surface of a device that has mining software installed. It puts the corporate device at risk and also increases operational costs as the power consumption usually goes up for mining devices. The most popular cryptocurrency choices for this kind of mining in the last 12 months were Etherium and Monero – altcoins that can profitably be mined without the need for inordinate electricity.
  2. Coinhive drive-by mining
    Coinhive is a technology that allows website owners to use their visitors’ computing power to mine a tiny fraction of cryptocurrency for the website owner. Visitors will experience a small increase in computer resource consumption while browsing the website. Some websites experiment with this model to create new forms of revenue streams alternative to advertisement and banner placements.

    Coinhive usage is often not an opt-in process. Darktrace has observed various customer devices that regularly visit websites leveraging Coinhive technology. While the power consumption increase for a device browsing a website with Coinhive is ultimately negligible, the cumulative effect of a sizeable portion of the workforce unwittingly browsing websites using Coinhive results in increased power consumption cost for the organization as a whole.
  3. Malicious insider
    A malicious insider compromised his employer’s website to put a Coinhive script on there. This then mined Monero for every visitor on the employer’s website for the malicious insider’s personal gain.
  4. Traditional malware
    Cyber criminals are constantly looking to improve the return on investment of their operations. Reports suggest that criminals are starting to adjust their monetization methods based on the financial means of their targets. Suppose you can’t pay the fee extorted in a ransomware attack? They’ll just install a crypto miner on your device instead to ensure that the attack is not completely fruitless.

    As malware authors become more sophisticated, they often deploy multi-staged malware that can swap weaponized payloads. Once malware has infected a system successfully, its authors can often decide what actions to take next. Encrypt the device and extort a ransom? Install a banking Trojan to harvest credit card details? Install more spyware modules to look for data exfiltration? Or, now, install a cryptocurrency miner.

    These pieces of malware operate stealthily and often go undetected for several weeks. An infection might start with a phishing email that contains a macro-enabled document. As soon as a user enabled the macro, the malware will download a file-less stager that lives in memory and cannot be detected by traditional antivirus. Command and control communication is usually maintained via IP addresses that change on a daily basis in order to outrun threat intelligence and blacklisting attempts. As no obvious damage is done straight away, these attacks often stay under the radar for prolonged times, so long as self-learning technology such as Darktrace is not employed.

    This becomes much more concerning as malware authors could swap one payload for another overnight if they deem it more profitable, switching from a furtive crypto mining Trojan to ransomware the next day. While we have not observed this kind of attack in the wild yet, it is plausible, and in cyberspace what can be done, will be done.

Conclusions

Revolutionary technologies like cryptocurrencies have both their dark and light aspects. For all of the creative energy released by the crypto-blockchain revolution, Bitcoin and its alternatives have quickly become the universal currency of the criminal underworld. Indeed, the former Chief Economist of the World Bank, Joseph Stiglitz – an adamant critic of cryptocurrencies – has said that the whole value of Bitcoin resides in its “potential for circumvention” and “lack of oversight”.

While Stiglitz’s case may be overstated, there can be no question that cyber criminals have sensed a new opportunity to make money. A lot of organizations still regard crypto mining as a compliance incident. This can lead to grave consequences as a cryptocurrency mining device might lead to more severe incidents that can have a serious effect on business operations.

This kind of threat is difficult to detect as no obvious damage is done. However, with Darktrace’s machine learning we can correlate even the weakest indicators of such an attack into a compelling picture of threat. While traditional tools may struggle to see these deviations, Darktrace can pinpoint the changes in behavior effected by cryptocurrency miners without having to rely on any blacklists or signatures.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 6, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

January 5, 2026

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface
Your data. Our AI.
Elevate your network security with Darktrace AI