Darktrace's AI Analyst: Closing the Cyber Skills Gap
25
Feb 2020
Discover how Darktrace's AI Analyst is bridging the cyber skills gap for OT, enhancing security and efficiency.
Security analysts investigate threats by finding patterns, forming hypotheses, reaching conclusions, and sharing their findings with the rest of the business. These are labor-intensive steps that take not only time, but years of training and expertise. And as operational technology (OT) becomes further integrated with the corporate network, and as threat-actors continue to advance their methods of attack, the emergence of a cyber security skills gap in the OT world becomes more and more evident.
The trend towards interconnected IT and OT environments is matched in equal measure by converging security teams. CISOs have assumed responsibility for the security of ICS environments without necessarily possessing specialized OT skills. Similarly, OT engineers are often handed security roles involving IT without sufficient training. As a result, a knowledge gap is emerging, with organizations struggling to find experts with the necessary skills in both operational technology and traditional IT.
However, developments in artificial intelligence are being leveraged to fill this skills shortage, and technology exists today that can stitch together related security events across OT and IT into a single incident — generating a meaningful, natural-language summary of the suspicious activity.
Darktrace’s Cyber AI Analyst for OT combines the skill of human expertise with the speed and scale of AI, empowering it to conduct expert investigations into hundreds of parallel threads simultaneously. This groundbreaking technology is the result of over 3 years of research and development at Darktrace’s R&D Center in Cambridge, UK — harnessing supervised machine learning to replicate the actions of expert OT and IT analysts. Every time a security alert is triggered, Cyber AI Analyst automatically pulls together a full incident report, drawing upon multiple related alerts and useful surrounding context to complete the picture.
Cyber AI Analyst for OT has domain knowledge from both OT and IT “baked in” to ensure that it can do a lot of the interpretation. An IT SOC can receive the specialized and detailed OT information relating to an incident, but also the higher-level abstractions and meaning to help them triage. Equally, OT engineers can, for example, be presented with a complete timeline of a zero-day ransomware infection as it emerges, without needing to know how to investigate file-sharing activity or command and control beaconing. Cyber AI Analyst for OT therefore not only saves security teams crucial time, but bridges the skills gap that increasingly widens as OT and IT environments continue to converge.
Investigating a ‘Triton 2.0’ attack
Cyber AI Analyst presents its findings in Darktrace’s graphical user interface, the Threat Visualizer. We can view an example of this by looking at a Triton-style cyber-attack captured within a customer environment.
Figure 1: Three models are breached by a desktop device
The threat tray above shows three individual alerts pertaining to a particular device — expdev127.scada.local, a desktop belonging to a domain administrator. Working in real time in the background, Cyber AI Analyst for OT now stitches together these multiple alerts into a single security incident, and then surfaces this incident in a high-level narrative, displaying all stages of the attack lifecycle on a single timeline.
Figure 2: The Threat Visualizer surfaces a timeline of the suspicious events
We can see that over the span of three hours, Darktrace identified a suspicious file download, possible command and control traffic, and a chain of administrative connections it deemed worthy of investigation. The Threat Visualizer then surfaced this series of suspicious connections, showing how the malware penetrated from the upper parts of the control system through to a workstation that can interact with PLCs.
Figure 3: A graphical representation of the RDP communication
Since the initial compromise infected a domain administrator’s desktop, the primary ‘hop’ of remote desktop to the local domain controller illustrated here is not unusual at all — the usage of legitimate administrative RDP credentials is commonplace from this device. However, as the incident unfolds, Cyber AI Analyst subsequently recognizes that this is related to more suspicious events, and is able to go back and include these events in a single narrative.
The malware then makes a second hop — also via RDP — to an engineering workstation and finally reprograms a related PLC, all the while retaining the remote access chain. As with the Triton attack that targeted various power plants in 2017, this attack relied on commonplace administration sessions to transfer tools, and for remote command/program execution. The Threat Visualizer shows us the destination port, as well as the application protocol used to deliver the final stage of the attack.
Figure 4: Further details of the reprogramming
Cyber AI Analyst converts the initial alerts into this incident report in real time, and the security team enter the fray armed with a much clearer and broader description of the incident, far sooner than if they had needed to perform these steps themselves. In this case, Cyber AI Analyst eventually includes seven alerts of different suspicious activities within this one incident, as well as multiple details that did not create alerts themselves but are strongly related and could have been omitted by an inexperienced analyst.
The near future of ICS attacks
Cyber-attacks on ICS are continuously evolving, with adversaries using the latest open-source technologies to launch evasive and machine-speed campaigns globally. While many organizations are turning to AI to face the scale, complexity, and speed of the cyber-threats they face in their IT and OT environments, we can also expect that these threat-actors will also start to use AI to achieve their objectives.
The threat-actors behind Triton blended mainstream IT attack techniques with specialized OT payloads and backed both up with strong operational discipline. The future addition of AI into such malware will allow it to achieve more inside a target network without persistent human oversight — and therefore dramatically decrease its chances of detection.
By combining both IT and OT analyst domain knowledge whilst operating at machine speed with a computer’s unwavering attention to detail, Cyber AI Analyst for OT will prove crucial for security teams by saving them vital time and filling in for any gaps in domain knowledge.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
David Masson
VP, Enterprise Security
David Masson is Darktrace’s Director of Enterprise Security, and has over two decades of experience working in fast moving security and intelligence environments in the UK, Canada and worldwide. With skills developed in the civilian, military and diplomatic worlds, he has been influential in the efficient and effective resolution of various unique national security issues. David is an operational solutions expert and has a solid reputation across the UK and Canada for delivery tailored to customer needs. At Darktrace, David advises strategic customers across North America and is also a regular contributor to major international and national media outlets in Canada where he is based. He holds a master’s degree from Edinburgh University.
Darktrace is positioned as a Leader in the IDC MarketScape: Worldwide Network Detection and Response 2024 Vendor Assessment
Darktrace is pleased to announce that we have been positioned as a Leader in the IDC MarketScape: Worldwide Network Detection and Response 2024 Vendor Assessment. We believe this further highlights Darktrace’s position as a pioneer in the NDR market and follows similar recognition from KuppingerCole, who recently named Darktrace as an Overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).
Network Detection and Response (NDR) solutions are uniquely positioned to provide visibility over the core hub of a business and employee activity, analyzing North-South and East-West traffic to identify threats across the modern network. NDR provides a rich and true source of anomalies and goes beyond process level data that is relied on by Endpoint Detection and Response (EDR) agents that do not provide network level visibility and can be misconfigured at any time.1
Metadata from network traffic can be used to detect a variety of different threats based on events such as anomalous port usage, unusual upload/download activity, impossible travel and many other activities.This has been accelerated by the increased usage of user behavioral analytics (UBA) in network security, which establishes statistical baselines about network entities and highlights deviations from expected activity.1
Darktrace is recognized as a Leader in the IDC MarketScape due to our leadership in the market and our pioneering leadership in AI over the past decade, alongside a variety of other unique differentiators and innovations in the NDR industry.
Darktrace / NETWORK™ delivers full visibility, real time threat detection and Autonomous Response capabilities across an organization’s on-premises, cloud, hybrid and virtual environments, including remote worker endpoints.
Unique Approach to AI
Most NDR vendors and network security tools such as IDS/IPS rely on detecting known attacks with historical data and supervised machine learning, leaving organizations blind and vulnerable to novel threats such as zero-days, variants of known attacks, supply chain attacks and insider threats.
These vendors also tend to apply AI models that are trained globally, and are not unique to each organization’s environment, which creates a high number of false positives and alerts that ultimately lack business context.
The IDC MarketScape recognizes that Darktrace takes a differentiated approach in the market with regards to delivering network detection and response capabilities, noting; “Darktrace is unique in that it does not rely on rules and signatures but rather learns what constitutes as normal for an organization and generates alerts when there is a deviation.”1
Darktrace / NETWORK achieves this through the use of Self-Learning AI and unsupervised machine learning to understand what is normal network behavior, continuously analyzing, mapping and modeling every connection to create a full picture of devices, identities, connections and potential attack paths. Darktrace Self-Learning AI autonomously optimizes itself to cut through the noise and quickly surface genuine, prioritized network security incidents – significantly reducing false positives and removing the hassle of needing to continually tuning alerts manually.
Darktrace’s unique approach to AI also extends to the investigation and triage of network alerts with Cyber AI Analyst. Unlike a chat or prompt based LLM, Cyber AI Analyst investigates all relevant alerts in an environment, including third party alerts, autonomously forming hypotheses and reaching conclusions just like a human analyst would, accelerating SOC Level 2 analyses of incidents by 10x. Cyber AI Analyst also typically providing SOC teams with up to 50,000 additional hours annually of Level 2 analysis producing high level alerts and written reporting, transforming security operations.2
Darktrace also uses its deep understanding of what is normal for a network to identify suspicious behavior, leveraging Autonomous Response capabilities to shut down both known and novel threats in real time, taking targeted actions without disrupting business operations. Darktrace / NETWORK is the only NDR solution that can autonomously enforce a pattern of life based on what is normal for a standalone device or group of peers, rapidly containing and disarming threats based on the overall context of the environment and a granular understanding of what is normal for a device or user – instead of relying on historical attack data.
Continued NDR Market Leadership
Darktrace has been recognized as a Leader in the NDR market, and the IDC MarketScape listed a variety of strengths:
Darktrace achieves roughly one-fifth of all global NDR revenue. This is important because other IT and cybersecurity solutions providers necessarily want to have integration with Darktrace.
The AI algorithms that Darktrace uses for NDR have had 10 years of deployments, tuning, and learning to draw from.
Darktrace is available as a SaaS, as an enterprise license, and as physical, hybrid, or virtual appliances. Darktrace also offers an endpoint agent and visibility into VPN and ZTNA.
Darktrace integrates with 30+ different interfaces including SIEM, SOAR, XDR platforms, IT ticketing solutions, and their own dashboards. The Darktrace Threat Visualizer highlights events and incidents from the entire deployment including cloud, apps, email, endpoint, zero trust, network, and OT.
Darktrace / NETWORK charts the progress that the SOC is making over time with key metrics such as MTTD/MTTR, alerts generated and processed, and other criteria.
Darktrace reported coverage of 14 MITRE ATT&CK categories, 158 techniques, and 184 subtechniques
Proactive Network Resilience
The IDC MarketScape notes, “Ultimately, NDR shines as a standalone detection and response technology but is especially powerful when combined with other platforms. NDR in combination with other control points such as endpoint, data, identity, and application provides the proper context when winnowing alerts and trying to uncover a single source of truth.” . Darktrace comprehensively addresses this as part of the ActiveAI Security Platform, by combining network alerts with data from / EMAIL, / IDENTITY, / ENDPOINT, / CLOUD and / OT, providing deeper contextual analysis for each network alert and automatically enriching investigations.
Darktrace also goes beyond NDR solutions with capabilities that are closely linked to our NDR offering, helping clients to achieve and maintain a state of proactive network resilience:
Darktrace / Proactive Exposure Management – look beyond just CVE risks to discover, prioritize and validate risks by business impact and how to address them early, reducing the number of real threats that security teams need to handle.
Darktrace / Incident Readiness & Recovery – lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations based on their own analysts and assets.
Together, these solutions allow Darktrace / NETWORK to go beyond the traditional approach to NDR and shift teams to a more hardened and proactive stance.
Protecting Clients with Continued Innovation
Darktrace invests heavily in Research and Development to continue providing customers with market-leading NDR capabilities and innovations, which was reflected in our position in the Leader category of the MarketScape report for both capabilities and strategy. We are led by the needs and challenges of our customers, which serve as the driving force behind our continued innovation and leadership in the NDR market. The IDC MarketScape report underlines this approach with the following feedback presented by Darktrace customers:
“A customer intimated that 99% of their detections were OOTB with little need to tune or define parameters.”
“A customer reported that it had early warnings for adversarial tactics such as suspicious SMB scanning, suspicious remote execution, remote desktop protocol (RDP) scanning, data exfiltration, C2C, LDAP query, and suspicious Kerberos activity.”
“The client could use Regex to determine if suspicious behavior was found elsewhere on the network.”
Thousands of customers around the world across all industries and sectors rely on Darktrace / NETWORK to protect against known and novel threats. From the latest vulnerabilities in network hardware to sophisticated new strains of ransomware and everything in-between, Darktrace helps clients detect and respond to all types of threats affecting their networks and avoid business disruption, even from the latest attacks.
Find out more about the unique capabilities of Darktrace / NETWORK and our application of AI in network security in the IDC MarketScape excerpt.
References
IDC MarketScape: Worldwide Network Detection and Response 2024 Vendor Assessment (Doc #US51752324, November 2024)
Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)
Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices
As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.
More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.
Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.
How did exploitation occur?
CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”. Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].
CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.
Post-Exploitation Patterns of Activity
Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:
Exploit validation and initial payload retrieval
Command and control (C2) connectivity, potentially featuring further binary downloads
Potential reconnaissance and cryptomining activity
Exploit Validation
Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.
Initial Payload Retrieval
Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.
In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.
While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.
The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.
While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP 38.180.147[.]18.
Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].
Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.
These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].
C2 Communication and Additional Payloads
Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.
Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.
These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliverand Gzip formatting.
For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.
External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.
Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.
Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.
Reconnaissance and Cryptomining
Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.
Conclusion
Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.
Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.
Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.
Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.