Blog
/
/
February 25, 2020

Darktrace's AI Analyst: Closing the Cyber Skills Gap

Discover how Darktrace's AI Analyst is bridging the cyber skills gap for OT, enhancing security and efficiency.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Feb 2020

Security analysts investigate threats by finding patterns, forming hypotheses, reaching conclusions, and sharing their findings with the rest of the business. These are labor-intensive steps that take not only time, but years of training and expertise. And as operational technology (OT) becomes further integrated with the corporate network, and as threat-actors continue to advance their methods of attack, the emergence of a cyber security skills gap in the OT world becomes more and more evident.

The trend towards interconnected IT and OT environments is matched in equal measure by converging security teams. CISOs have assumed responsibility for the security of ICS environments without necessarily possessing specialized OT skills. Similarly, OT engineers are often handed security roles involving IT without sufficient training. As a result, a knowledge gap is emerging, with organizations struggling to find experts with the necessary skills in both operational technology and traditional IT.

However, developments in artificial intelligence are being leveraged to fill this skills shortage, and technology exists today that can stitch together related security events across OT and IT into a single incident — generating a meaningful, natural-language summary of the suspicious activity.

Darktrace’s Cyber AI Analyst for OT combines the skill of human expertise with the speed and scale of AI, empowering it to conduct expert investigations into hundreds of parallel threads simultaneously. This groundbreaking technology is the result of over 3 years of research and development at Darktrace’s R&D Center in Cambridge, UK — harnessing supervised machine learning to replicate the actions of expert OT and IT analysts. Every time a security alert is triggered, Cyber AI Analyst automatically pulls together a full incident report, drawing upon multiple related alerts and useful surrounding context to complete the picture.

Cyber AI Analyst for OT has domain knowledge from both OT and IT “baked in” to ensure that it can do a lot of the interpretation. An IT SOC can receive the specialized and detailed OT information relating to an incident, but also the higher-level abstractions and meaning to help them triage. Equally, OT engineers can, for example, be presented with a complete timeline of a zero-day ransomware infection as it emerges, without needing to know how to investigate file-sharing activity or command and control beaconing. Cyber AI Analyst for OT therefore not only saves security teams crucial time, but bridges the skills gap that increasingly widens as OT and IT environments continue to converge.

Investigating a ‘Triton 2.0’ attack

Cyber AI Analyst presents its findings in Darktrace’s graphical user interface, the Threat Visualizer. We can view an example of this by looking at a Triton-style cyber-attack captured within a customer environment.

Figure 1: Three models are breached by a desktop device

The threat tray above shows three individual alerts pertaining to a particular device — expdev127.scada.local, a desktop belonging to a domain administrator. Working in real time in the background, Cyber AI Analyst for OT now stitches together these multiple alerts into a single security incident, and then surfaces this incident in a high-level narrative, displaying all stages of the attack lifecycle on a single timeline.

Figure 2: The Threat Visualizer surfaces a timeline of the suspicious events

We can see that over the span of three hours, Darktrace identified a suspicious file download, possible command and control traffic, and a chain of administrative connections it deemed worthy of investigation. The Threat Visualizer then surfaced this series of suspicious connections, showing how the malware penetrated from the upper parts of the control system through to a workstation that can interact with PLCs.

Figure 3: A graphical representation of the RDP communication

Since the initial compromise infected a domain administrator’s desktop, the primary ‘hop’ of remote desktop to the local domain controller illustrated here is not unusual at all — the usage of legitimate administrative RDP credentials is commonplace from this device. However, as the incident unfolds, Cyber AI Analyst subsequently recognizes that this is related to more suspicious events, and is able to go back and include these events in a single narrative.

The malware then makes a second hop — also via RDP — to an engineering workstation and finally reprograms a related PLC, all the while retaining the remote access chain. As with the Triton attack that targeted various power plants in 2017, this attack relied on commonplace administration sessions to transfer tools, and for remote command/program execution. The Threat Visualizer shows us the destination port, as well as the application protocol used to deliver the final stage of the attack.

Figure 4: Further details of the reprogramming

Cyber AI Analyst converts the initial alerts into this incident report in real time, and the security team enter the fray armed with a much clearer and broader description of the incident, far sooner than if they had needed to perform these steps themselves. In this case, Cyber AI Analyst eventually includes seven alerts of different suspicious activities within this one incident, as well as multiple details that did not create alerts themselves but are strongly related and could have been omitted by an inexperienced analyst.

The near future of ICS attacks

Cyber-attacks on ICS are continuously evolving, with adversaries using the latest open-source technologies to launch evasive and machine-speed campaigns globally. While many organizations are turning to AI to face the scale, complexity, and speed of the cyber-threats they face in their IT and OT environments, we can also expect that these threat-actors will also start to use AI to achieve their objectives.

The threat-actors behind Triton blended mainstream IT attack techniques with specialized OT payloads and backed both up with strong operational discipline. The future addition of AI into such malware will allow it to achieve more inside a target network without persistent human oversight — and therefore dramatically decrease its chances of detection.

By combining both IT and OT analyst domain knowledge whilst operating at machine speed with a computer’s unwavering attention to detail, Cyber AI Analyst for OT will prove crucial for security teams by saving them vital time and filling in for any gaps in domain knowledge.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI