Blog
/

Inside the SOC

/
April 4, 2022

Explore Internet-Facing System Vulnerabilities

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Apr 2022
Read about 2021's top four incidents and how Darktrace's advanced threat detection technology identified and mitigated vulnerabilities. Learn more.

By virtue of their exposure, Internet-facing systems (i.e., systems which have ports open/exposed to the wider Internet) are particularly susceptible to compromise. Attackers typically compromise Internet-facing systems by exploiting zero-day vulnerabilities in applications they run. During 2021, critical zero-day vulnerabilities in the following applications were publicly disclosed:

Internet-facing systems running these applications were consequently heavily targeted by attackers. In this post, we will provide examples of compromises of these systems observed by Darktrace’s SOC team in 2021. As will become clear, successful exploitation of weaknesses in Internet-facing systems inevitably results in such systems doing things which they do not normally do. Rather than focusing on identifying attempts to exploit these weaknesses, Darktrace focuses on identifying the unusual behaviors which inevitably ensue. The purpose of this post is to highlight the effectiveness of this approach.

Exchange server compromise

In January, researchers from the cyber security company DEVCORE reported a series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyLogon’.[1] ProxyLogon consists of a server-side request forgery (SSRF) vulnerability (CVE-2021-26855) and a remote code execution (RCE) vulnerability (CVE-2021-27065). Attackers were observed exploiting these vulnerabilities in the wild from as early as January 6.[2] In April, DEVCORE researchers reported another series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyShell’.[3] ProxyShell consists of a pre-authentication path confusion vulnerability (CVE-2021-34473), a privilege elevation vulnerability (CVE-2021-34523), and a post-authentication RCE vulnerability (CVE-2021-31207). Attackers were first observed exploiting these vulnerabilities in the wild in August.[4] In many cases, attackers exploited the ProxyShell and ProxyLogon vulnerabilities in order to create web shells on the targeted Exchange servers. The presence of these web shells provided attackers with the means to remotely execute commands on the compromised servers.

In early August 2021, by exploiting the ProxyShell vulnerabilities, an attacker gained the rights to remotely execute PowerShell commands on an Internet-facing Exchange server within the network of a US-based transportation company. The attacker subsequently executed a number of PowerShell commands on the server. One of these commands caused the server to make a 28-minute-long SSL connection to a highly unusual external endpoint. Within a couple of hours, the attacker managed to strengthen their foothold within the network by installing AnyDesk and CobaltStrike on several internal devices. In mid-August, the attacker got the devices on which they had installed Cobalt Strike to conduct network reconnaissance and to transfer terabytes of data to the cloud storage service, MEGA. At the end of August, the attacker got the devices on which they had installed AnyDesk to execute Conti ransomware and to spread executable files and script files to further internal devices.

In this example, the attacker’s exploitation of ProxyShell immediately resulted in the Exchange Server making a long SSL connection to an unusual external endpoint. This connection caused the model Device / Long Agent Connection to New Endpoint to breach. The subsequent reconnaissance, lateral movement, C2, external data transfer, and encryption behavior brought about by the attacker were also picked up by Darktrace’s models.

A non-exhaustive list of the models that breached as a result of the behavior brought about by the attacker:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

Confluence server compromise

Atlassian’s Confluence is an application which provides the means for building collaborative, virtual workspaces. In the era of remote working, the value of such an application is undeniable. The public disclosure of a critical remote code execution (RCE) vulnerability (CVE-2021-26084) in Confluence in August 2021 thus provided a prime opportunity for attackers to cause havoc. The vulnerability, which arises from the use of Object-Graph Navigation Language (OGNL) in Confluence’s tag system, provides attackers with the means to remotely execute code on vulnerable Confluence server by sending a crafted HTTP request containing a malicious parameter.[5] Attackers were first observed exploiting this vulnerability towards the end of August, and in the majority of cases, attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable servers.[6]

At the beginning of September 2021, an attacker was observed exploiting CVE-2021-26084 in order to install the crypto-mining tool, XMRig, as well as a shell script, onto an Internet-facing Confluence server within the network of an EMEA-based television and broadcasting company. Within a couple of hours, the attacker installed files associated with the crypto-mining malware, Kinsing, onto the server. The Kinsing-infected server then immediately began to communicate over HTTP with the attacker’s C2 infrastructure. Around the time of this activity, the server was observed using the MinerGate crypto-mining protocol, indicating that the server had begun to mine cryptocurrency.

In this example, the attacker’s exploitation of CVE-2021-26084 immediately resulted in the Confluence server making an HTTP GET request with an unusual user-agent string (one associated with curl in this case) to a rare external IP. This behavior caused the models Device / New User Agent, Anomalous Connection / New User Agent to IP Without Hostname, and Anomalous File / Script from Rare Location to breach. The subsequent file downloads, C2 traffic and crypto-mining activity also resulted in several models breaching.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Device / Internet Facing Device with High Priority Alert

GitLab server compromise

GitLab is an application providing services ranging from project planning to source code management. Back in April 2021, a critical RCE vulnerability (CVE-2021-22205) in GitLab was publicly reported by a cyber security researcher via the bug bounty platform, HackerOne.[7] The vulnerability, which arises from GitLab’s use of ExifTool for removing metadata from image files, [8] enables attackers to remotely execute code on vulnerable GitLab servers by uploading specially crafted image files.[9] Attackers were first observed exploiting CVE-2021-22205 in the wild in June/July.[10] A surge in exploitations of the vulnerability was observed at the end of October, with attackers exploiting the flaw in order to assemble botnets.[11] Darktrace observed a significant number of cases in which attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable GitLab servers.

On October 29, an attacker successfully exploited CVE-2021-22205 on an Internet-facing GitLab server within the network of a UK-based education provider. The organization was trialing Darktrace when this incident occurred. The attacker installed several executable files and shell scripts onto the server by exploiting the vulnerability. The attacker communicated with the compromised server (using unusual ports) for several days, before making the server transfer large volumes of data externally and download the crypto-mining tool, XMRig, as well as the botnet malware, Mirai. The server was consequently observed making connections to the crypto-mining pool, C3Pool.

In this example, the attacker’s exploitation of the vulnerability in GitLab immediately resulted in the server making an HTTP GET request with an unusual user-agent string (one associated with Wget in this case) to a rare external IP. The models Anomalous Connection / New User Agent to IP Without Hostname and Anomalous File / EXE from Rare External Location breached as a result of this behavior. The attacker’s subsequent activity on the server over the next few days resulted in frequent model breaches.

A non-exhaustive list of the models which breached as a result of the attacker’s activity on the server:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing Device with High Priority Alert
  • Anomalous File / Script from Rare Location
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Device / Initial Breach Chain Compromise
  • Unusual Activity / Unusual External Data to New IPs
  • Anomalous Server Activity / Outgoing from Server
  • Device / Large Number of Model Breaches from Critical Network Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Compromise / Suspicious File and C2
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Compliance / Crypto Currency Mining Activity
  • Compliance / High Priority Crypto Currency Mining
  • Anomalous File / Zip or Gzip from Rare External Location
  • Compromise / Monero Mining
  • Device / Internet Facing Device with High Priority Alert
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous File / Numeric Exe Download

Log4j server compromise

On December 9 2021, a critical RCE vulnerability (dubbed ‘Log4Shell’) in version 2 of Apache’s Log4j was publicly disclosed by researchers at LunaSec.[12] As a logging library present in potentially millions of Java applications,[13] Log4j constitutes an obscured, yet ubiquitous feature of the digital world. The vulnerability (CVE-2021-44228), which arises from Log4j’s Java Naming and Directory Interface (JNDI) Lookup feature, enables an attacker to make a vulnerable server download and execute a malicious Java class file. To exploit the vulnerability, all the attacker must do is submit a specially crafted JNDI lookup request to the server. The fact that Log4j is present in so many applications and that the exploitation of this vulnerability is so simple, Log4Shell has been dubbed the ‘most critical vulnerability of the last decade’.[14] Attackers have been exploiting Log4Shell in the wild since at least December 1.[15] Since then, attackers have been observed exploiting the vulnerability to install crypto-mining tools, Cobalt Strike, and RATs onto vulnerable servers.[16]

On December 10, one day after the public disclosure of Log4Shell, an attacker successfully exploited the vulnerability on a vulnerable Internet-facing server within the network of a US-based architecture company. By exploiting the vulnerability, the attacker managed to get the server to download and execute a Java class file named ‘Exploit69ogQNSQYz.class’. Executing the code in this file caused the server to download a shell script file and a file related to the Kinsing crypto-mining malware. The Kinsing-infected server then went on to communicate over HTTP with a C2 server. Since the customer was using the Proactive Threat Notification (PTN) service, they were immediately alerted to this activity, and the server was subsequently quarantined, preventing crypto-mining activity from taking place.

In this example, the attacker’s exploitation of the zero-day vulnerability immediately resulted in the vulnerable server making an HTTP GET request with an unusual user-agent string (one associated with Java in this case) to a rare external IP. The models Anomalous Connection / Callback on Web Facing Device and Anomalous Connection / New User Agent to IP Without Hostname breached as a result of this behavior. The device’s subsequent file downloads and C2 activity caused several Darktrace models to breach.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare External Location
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Round-up

It is inevitable that attackers will attempt to exploit zero-day vulnerabilities in applications running on Internet-facing devices. Whilst identifying these attempts is useful, the fact that attackers regularly exploit new zero-days makes the task of identifying attempts to exploit them akin to a game of whack-a-mole. Whilst it is uncertain which zero-day vulnerability attackers will exploit next, what is certain is that their exploitation of it will bring about unusual behavior. No matter the vulnerability, whether it be a vulnerability in Microsoft Exchange, Confluence, GitLab, or Log4j, Darktrace will identify the unusual behaviors which inevitably result from its exploitation. By identifying unusual behaviors displayed by Internet-facing devices, Darktrace thus makes it almost impossible for attackers to successfully exploit zero-day vulnerabilities without being detected.

For Darktrace customers who want to find out more about detecting potential compromises of internet-facing devices, refer here for an exclusive supplement to this blog.

Thanks to Andy Lawrence for his contributions.

Footnotes

1. https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/

2. https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/

3. https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

4. https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/

5. https://www.kaspersky.co.uk/blog/confluence-server-cve-2021-26084/23376/

6. https://www.bleepingcomputer.com/news/security/atlassian-confluence-flaw-actively-exploited-to-install-cryptominers/

7. https://hackerone.com/reports/1154542

8. https://security.humanativaspa.it/gitlab-ce-cve-2021-22205-in-the-wild/

9.https://about.gitlab.com/releases/2021/04/14/security-release-gitlab-13-10-3-released/

10. https://www.rapid7.com/blog/post/2021/11/01/gitlab-unauthenticated-remote-code-execution-cve-2021-22205-exploited-in-the-wild/

11. https://www.hackmageddon.com/2021/12/16/1-15-november-2021-cyber-attacks-timeline/

12. https://www.lunasec.io/docs/blog/log4j-zero-day/

13. https://www.csoonline.com/article/3644472/apache-log4j-vulnerability-actively-exploited-impacting-millions-of-java-based-apps.html

14. https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell

15. https://www.rapid7.com/blog/post/2021/12/15/the-everypersons-guide-to-log4shell-cve-2021-44228/

16. https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI