Blog
/
/
December 20, 2022

How to Select the Right Cybersecurity AI

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2022
Choosing the right cybersecurity AI is crucial. Darktrace's guide provides insights and tips to help you make an informed decision.

AI has long been a buzzword – we started seeing it utilized in consumer space; in social media, e-commerce, and even in our music preference! In the past few years it has started to make its way through the enterprise space, especially in cyber security.

Increasingly, we see threat actors utilizing AI in their attack techniques. This is inevitable with the advancements in AI technology, the lower barrier to entry to the cyber security industry, and the continued profitability of being a threat actor. Surveying security decision makers across different industries like financial services and manufacturing, 77% of the respondents expect weaponized AI to lead to an increase in the scale and speed of attacks. 

Defenders are also ramping up their use of AI in cyber security – with more than 80% of the respondents agreeing that organizations require advanced defenses to combat offensive AI – resulted in a ‘cyber arms race’ with adversaries and security teams in constant pursuit of the latest technological advancements.  

The rules and signature approach is no longer sufficient in this evolving threat landscape. Because of this collective need, we will continue to see the push of AI innovations in this space as well. By 2025, cyber security technologies will account for 25% of the AI software market.

Despite the intrigue surrounding AI, many people have a limited understanding of how it truly works. The mystery of AI technology is what piques the interest of many cyber security practitioners. As an industry we also know that AI is necessary for advancement, but there is so much noise around AI and machine learning that some teams struggle to understand it. The paradox of choice leaves security teams more frustrated and confused by all the options presented to them.

Identifying True AI

You first need to define what you want the AI technology to solve. This might seem trivial, but many security teams often forget to come back to the fundamentals: what problem are you addressing? What are you trying to improve? 

Not every process needs AI; some processes will simply need automation – these are the more straightforward parts of your business. More complex and bigger systems require AI. The crux is identifying these parts of your business, applying AI and being clear of what you are going to achieve with these AI technologies. 

For example, when it comes to factory floor operations or tracking leave days of employees, businesses employ automation technologies, but when it comes to business decisions like PR strategies or new business exploration, AI is used to predict trends and help business owners make these decisions. 

Similarly, in cyber security, when dealing with known threats such as known malicious malware and hosting sites, automation is great at keeping track of them; workflows and playbooks are also best assessed with automation tools. However, when it comes to unknown unknowns like zero-day attacks, insider threats, IoT threats and supply chain attacks, AI is needed to detect and respond these threats as they emerge.

Automation is often communicated as AI, and it becomes difficult for security teams to differentiate. Automation helps you to quickly make a decision you already know you will make, whereas true AI helps you make a better decision.

Key ways to differentiate true AI from automation:

  • The Data Set: In automation, what you are looking for is very well-scoped. You already know what you are looking for – you are just accelerating the process with rules and signatures. True AI is dynamic. You no longer need to define activities that deserve your attention, the AI highlights and prioritizes this for you.
  • Bias: When you define what you are looking for, as humans inherently we impose our biases on these decisions. We are also limited by our knowledge at that point in time – this leaves out the crucial unknown unknowns.
  • Real-time: Every organization is always changing and it is important that AI takes all that data into consideration. True AI that is real time and also changes with your organization’s growth is hard to find. 

Our AI Research Centre has produced numerous papers on the applications of true AI in cyber security. The Centre comprises of more than 150 members and has more than 100 patents and patents pending. Some of the featured white papers include research on Attack Path Modeling and using AI as a preventative approach in your organization. 

Integrating AI Outputs with People, Process, and Technology


Integrating AI with People

We are living in the time of trust deficit, and that applies to AI as well. As humans we can be skeptical with AI, so how do we build trust for AI such that it works for us? This applies not only to the users of the technology, but the wider organization as well. Since this is the People pillar, the key factors to achieving trust in AI is through education, culture, and exposure. In a culture where people are open to learn and try new AI technologies, we will naturally build trust towards AI over time.

Integrating AI with Process

Then we should consider the integration of AI and its outputs into your workflow and playbooks. To make decisions around that, security managers need to be clear what their security priorities are, or which security gaps a particular technology is meant to fill. Regardless of whether you have an outsourced MSSP/SOC team, 50-strong in-house SOC team, or even just a 2-man team, it is about understanding your priorities and assigning the proper resources to them.

Integrating AI with Technology 

Finally, there is the integration of AI with your existing technology stack. Most security teams deploy different tools and services to help them achieve different goals – whether it is a tool like SIEM, a firewall, an endpoint, or services like pentesting, or vulnerability assessment exercises. One of the biggest challenges is putting all of this information together and pulling actionable insights out of them. Integration on multiple levels is always challenging with complex technologies because they technologies can rate or interpret threats differently.

Security teams often find themselves spending the most time making sense of the output of different tools and services. For example, taking the outcomes from a pentesting report and trying to enhance SOAR configurations, or looking at SOC alerts to advise firewall configurations, or taking vulnerability assessment reports to scope third-party Incident Response teams.

These tools can have a strong mastery of large volumes of data, but eventually ownership of the knowledge should still lie with the human teams – and the way to do that is with continuous feedback and integration. It is no longer efficient to use human teams to carry out this at scale and at speed. 

The Cyber AI Loop is Darktrace’s approach to cyber security. The four product families make up a key aspect of an organization’s cyber security posture. Darktrace PREVENT, DETECT, RESPOND and HEAL each feed back into a continuous, virtuous cycle, constantly strengthening each other’s abilities. 

This cycle augments humans at every stage of an incident lifecycle. For example, PREVENT may alert you to a vulnerability which holds a particularly high risk potential for your organization. It provides clear mitigation advice, and while you are on this, PREVENT will feed into DETECT and RESPOND, which are immediately poised to kick in should an attack occur in the interim. Conversely, once an attack has been contained by RESPOND, it will feed information back into PREVENT which will anticipate an attacker’s likely next move. Cyber AI Loop helps you harden security a holistic way so that month on month, year on year, the organization continuously improves its defensive posture. 

Explainable AI

Despite its complexity, AI needs to produce outputs that are clear and easy to understand in order to be useful. In the heat of the moment during a cyber incident, human teams need to quickly comprehend: What happened here? When did it happen? What devices are affected? What does it mean for my business? What should I deal with first?

To this end, Darktrace applies another level of AI on top of its initial findings that autonomously investigates in the background, reducing a mass of individual security events to just a few overall cyber incidents worthy of human review. It generates natural-language incident reports with all the relevant information for your team to make judgements in an instant. 

Figure 1: An example of how Darktrace filters individual model breaches into incidents and then critical incidents for the human to review 

Cyber AI Analyst does not only take into consideration network detection but also in your endpoints, your cloud space, IoT devices and OT devices. Cyber AI Analyst also looks at your attack surface and the risks associated to triage and show you the most prioritized alerts that if unexpected would cause maximum damage to your organization. These insights are not only delivered in real time but also unique to your environment.

This also helps address another topic that frequently comes up in conversations around AI: false positives. This is of course a valid concern: what is the point of harvesting the value of AI if it means that a small team now must look at thousands of alerts? But we have to remember that while AI allows us to make more connections over the vastness of logs, its goal is not to create more work for security teams, but to augment them instead.

To ensure that your business can continue to own these AI outputs and more importantly the knowledge, Explainable AI such as that used in Darktrace’s Cyber AI Analyst is needed to interpret the findings of AI, to ensure human teams know what happened, what action (if any) the AI took, and why. 

Conclusion

Every organization is different, and its security should reflect that. However, some fundamental common challenges of AI in cyber security are shared amongst all security teams, regardless of size, resources, industry vertical, and culture. Their cyber strategy and maturity levels are what sets them apart. Maturity is not defined by how many professional certifications or how many years of experience the team has. A mature team works together to solve problems. They understand that while AI is not the silver bullet, it is a powerful bullet that if used right, will autonomously harden the security of the complete digital ecosystem, while augmenting the humans tasked with defending it. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
No items found.
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Identity

/

January 29, 2025

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 28, 2025

RansomHub Ransomware: investigación de Darktrace sobre la herramienta más nueva en ShadowSyndicate's Arsenal

Default blog imageDefault blog image

What is ShadowSyndicate?

ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].

What is RansomHub?

First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].

ShadowSyndicate and RansomHub

External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].

Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].

In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.

Darktrace’s coverage of ShadowSyndicate and RansomHub

Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.

Attack Overview

Timeline attack overview of ransomhub ransomware

Internal Reconnaissance

The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.

C2 Communication and Data Exfiltration

In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.

Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.

Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.

Lateral Movement

In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.

The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.

Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.

Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.

File Encryption

Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.

Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.

Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.

Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.

In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.

Figure 4: A list of suggested Autonomous Response actions on the affected devices."

Conclusion

The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.

For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.

Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)

Appendices

Darktrace Model Detections

Antigena Models / Autonomous Response:

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / External Threat / Antigena File then New Outbound Block


Network Reconnaissance:

Device / Network Scan

Device / ICMP Address Scan

Device / RDP Scan
Device / Anomalous LDAP Root Searches
Anomalous Connection / SMB Enumeration
Device / Spike in LDAP Activity

C2:

Enhanced Monitoring - Device / Lateral Movement and C2 Activity

Enhanced Monitoring - Device / Initial Breach Chain Compromise

Enhanced Monitoring - Compromise / Suspicious File and C2

Compliance / Remote Management Tool On Server

Anomalous Connection / Outbound SSH to Unusual Port


External Data Transfer:

Enhanced Monitoring - Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Compliance / SSH to Rare External Destination

Anomalous Connection / Application Protocol on Uncommon Port

Enhanced Monitoring - Anomalous File / Numeric File Download

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous Server Activity / Outgoing from Server

Device / Large Number of Connections to New Endpoints

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Lateral Movement:

User / New Admin Credentials on Server

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous File / Internal / Executable Uploaded to DC

Anomalous Connection / Suspicious Activity On High Risk Device

File Encryption:

Compliance / SMB Drive Write

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Anomalous Connection / Suspicious Read Write Ratio

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

83.97.73[.]198 - IP - Data exfiltration endpoint

108.181.182[.]143 - IP - Data exfiltration endpoint

46.161.27[.]151 - IP - Data exfiltration endpoint

185.65.212[.]164 - IP - Data exfiltration endpoint

66[.]203.125.21 - IP - MEGA endpoint used for data exfiltration

89[.]44.168.207 - IP - MEGA endpoint used for data exfiltration

185[.]206.24.31 - IP - MEGA endpoint used for data exfiltration

31[.]216.148.33 - IP - MEGA endpoint used for data exfiltration

104.226.39[.]18 - IP - C2 endpoint

103.253.40[.]87 - IP - C2 endpoint

*.relay.splashtop[.]com - Hostname - C2 & data exfiltration endpoint

gfs***n***.userstorage.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

w.api.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

ams-rb9a-ss.ams.efscloud[.]net - Hostname - Data exfiltration endpoint

MITRE ATT&CK Mapping

Tactic - Technqiue

RECONNAISSANCE – T1592.004 Client Configurations

RECONNAISSANCE – T1590.005 IP Addresses

RECONNAISSANCE – T1595.001 Scanning IP Blocks

RECONNAISSANCE – T1595.002 Vulnerability Scanning

DISCOVERY – T1046 Network Service Scanning

DISCOVERY – T1018 Remote System Discovery

DISCOVERY – T1083 File and Directory Discovery
INITIAL ACCESS - T1189 Drive-by Compromise

INITIAL ACCESS - T1190 Exploit Public-Facing Application

COMMAND AND CONTROL - T1001 Data Obfuscation

COMMAND AND CONTROL - T1071 Application Layer Protocol

COMMAND AND CONTROL - T1071.001 Web Protocols

COMMAND AND CONTROL - T1573.001 Symmetric Cryptography

COMMAND AND CONTROL - T1571 Non-Standard Port

DEFENSE EVASION – T1078 Valid Accounts

DEFENSE EVASION – T1550.002 Pass the Hash

LATERAL MOVEMENT - T1021.004 SSH

LATERAL MOVEMENT – T1080 Taint Shared Content

LATERAL MOVEMENT – T1570 Lateral Tool Transfer

LATERAL MOVEMENT – T1021.002 SMB/Windows Admin Shares

COLLECTION - T1185 Man in the Browser

EXFILTRATION - T1041 Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 Exfiltration to Cloud Storage

EXFILTRATION - T1029 Scheduled Transfer

IMPACT – T1486 Data Encrypted for Impact

References

1.     https://www.group-ib.com/blog/shadowsyndicate-raas/

2.     https://www.techtarget.com/searchsecurity/news/366617096/ESET-RansomHub-most-active-ransomware-group-in-H2-2024

3.     https://cyberint.com/blog/research/ransomhub-the-new-kid-on-the-block-to-know/

4.     https://www.cisa.gov/sites/default/files/2024-05/AA24-131A.stix_.xml

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore
Your data. Our AI.
Elevate your network security with Darktrace AI