Blog
/
AI
/
December 20, 2022

How to Select the Right Cybersecurity AI

Choosing the right cybersecurity AI is crucial. Darktrace's guide provides insights and tips to help you make an informed decision.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Germaine Tan
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2022

AI has long been a buzzword – we started seeing it utilized in consumer space; in social media, e-commerce, and even in our music preference! In the past few years it has started to make its way through the enterprise space, especially in cyber security.

Increasingly, we see threat actors utilizing AI in their attack techniques. This is inevitable with the advancements in AI technology, the lower barrier to entry to the cyber security industry, and the continued profitability of being a threat actor. Surveying security decision makers across different industries like financial services and manufacturing, 77% of the respondents expect weaponized AI to lead to an increase in the scale and speed of attacks. 

Defenders are also ramping up their use of AI in cyber security – with more than 80% of the respondents agreeing that organizations require advanced defenses to combat offensive AI – resulted in a ‘cyber arms race’ with adversaries and security teams in constant pursuit of the latest technological advancements.  

The rules and signature approach is no longer sufficient in this evolving threat landscape. Because of this collective need, we will continue to see the push of AI innovations in this space as well. By 2025, cyber security technologies will account for 25% of the AI software market.

Despite the intrigue surrounding AI, many people have a limited understanding of how it truly works. The mystery of AI technology is what piques the interest of many cyber security practitioners. As an industry we also know that AI is necessary for advancement, but there is so much noise around AI and machine learning that some teams struggle to understand it. The paradox of choice leaves security teams more frustrated and confused by all the options presented to them.

Identifying True AI

You first need to define what you want the AI technology to solve. This might seem trivial, but many security teams often forget to come back to the fundamentals: what problem are you addressing? What are you trying to improve? 

Not every process needs AI; some processes will simply need automation – these are the more straightforward parts of your business. More complex and bigger systems require AI. The crux is identifying these parts of your business, applying AI and being clear of what you are going to achieve with these AI technologies. 

For example, when it comes to factory floor operations or tracking leave days of employees, businesses employ automation technologies, but when it comes to business decisions like PR strategies or new business exploration, AI is used to predict trends and help business owners make these decisions. 

Similarly, in cyber security, when dealing with known threats such as known malicious malware and hosting sites, automation is great at keeping track of them; workflows and playbooks are also best assessed with automation tools. However, when it comes to unknown unknowns like zero-day attacks, insider threats, IoT threats and supply chain attacks, AI is needed to detect and respond these threats as they emerge.

Automation is often communicated as AI, and it becomes difficult for security teams to differentiate. Automation helps you to quickly make a decision you already know you will make, whereas true AI helps you make a better decision.

Key ways to differentiate true AI from automation:

  • The Data Set: In automation, what you are looking for is very well-scoped. You already know what you are looking for – you are just accelerating the process with rules and signatures. True AI is dynamic. You no longer need to define activities that deserve your attention, the AI highlights and prioritizes this for you.
  • Bias: When you define what you are looking for, as humans inherently we impose our biases on these decisions. We are also limited by our knowledge at that point in time – this leaves out the crucial unknown unknowns.
  • Real-time: Every organization is always changing and it is important that AI takes all that data into consideration. True AI that is real time and also changes with your organization’s growth is hard to find. 

Our AI Research Centre has produced numerous papers on the applications of true AI in cyber security. The Centre comprises of more than 150 members and has more than 100 patents and patents pending. Some of the featured white papers include research on Attack Path Modeling and using AI as a preventative approach in your organization. 

Integrating AI Outputs with People, Process, and Technology


Integrating AI with People

We are living in the time of trust deficit, and that applies to AI as well. As humans we can be skeptical with AI, so how do we build trust for AI such that it works for us? This applies not only to the users of the technology, but the wider organization as well. Since this is the People pillar, the key factors to achieving trust in AI is through education, culture, and exposure. In a culture where people are open to learn and try new AI technologies, we will naturally build trust towards AI over time.

Integrating AI with Process

Then we should consider the integration of AI and its outputs into your workflow and playbooks. To make decisions around that, security managers need to be clear what their security priorities are, or which security gaps a particular technology is meant to fill. Regardless of whether you have an outsourced MSSP/SOC team, 50-strong in-house SOC team, or even just a 2-man team, it is about understanding your priorities and assigning the proper resources to them.

Integrating AI with Technology 

Finally, there is the integration of AI with your existing technology stack. Most security teams deploy different tools and services to help them achieve different goals – whether it is a tool like SIEM, a firewall, an endpoint, or services like pentesting, or vulnerability assessment exercises. One of the biggest challenges is putting all of this information together and pulling actionable insights out of them. Integration on multiple levels is always challenging with complex technologies because they technologies can rate or interpret threats differently.

Security teams often find themselves spending the most time making sense of the output of different tools and services. For example, taking the outcomes from a pentesting report and trying to enhance SOAR configurations, or looking at SOC alerts to advise firewall configurations, or taking vulnerability assessment reports to scope third-party Incident Response teams.

These tools can have a strong mastery of large volumes of data, but eventually ownership of the knowledge should still lie with the human teams – and the way to do that is with continuous feedback and integration. It is no longer efficient to use human teams to carry out this at scale and at speed. 

The Cyber AI Loop is Darktrace’s approach to cyber security. The four product families make up a key aspect of an organization’s cyber security posture. Darktrace PREVENT, DETECT, RESPOND and HEAL each feed back into a continuous, virtuous cycle, constantly strengthening each other’s abilities. 

This cycle augments humans at every stage of an incident lifecycle. For example, PREVENT may alert you to a vulnerability which holds a particularly high risk potential for your organization. It provides clear mitigation advice, and while you are on this, PREVENT will feed into DETECT and RESPOND, which are immediately poised to kick in should an attack occur in the interim. Conversely, once an attack has been contained by RESPOND, it will feed information back into PREVENT which will anticipate an attacker’s likely next move. Cyber AI Loop helps you harden security a holistic way so that month on month, year on year, the organization continuously improves its defensive posture. 

Explainable AI

Despite its complexity, AI needs to produce outputs that are clear and easy to understand in order to be useful. In the heat of the moment during a cyber incident, human teams need to quickly comprehend: What happened here? When did it happen? What devices are affected? What does it mean for my business? What should I deal with first?

To this end, Darktrace applies another level of AI on top of its initial findings that autonomously investigates in the background, reducing a mass of individual security events to just a few overall cyber incidents worthy of human review. It generates natural-language incident reports with all the relevant information for your team to make judgements in an instant. 

Figure 1: An example of how Darktrace filters individual model breaches into incidents and then critical incidents for the human to review 

Cyber AI Analyst does not only take into consideration network detection but also in your endpoints, your cloud space, IoT devices and OT devices. Cyber AI Analyst also looks at your attack surface and the risks associated to triage and show you the most prioritized alerts that if unexpected would cause maximum damage to your organization. These insights are not only delivered in real time but also unique to your environment.

This also helps address another topic that frequently comes up in conversations around AI: false positives. This is of course a valid concern: what is the point of harvesting the value of AI if it means that a small team now must look at thousands of alerts? But we have to remember that while AI allows us to make more connections over the vastness of logs, its goal is not to create more work for security teams, but to augment them instead.

To ensure that your business can continue to own these AI outputs and more importantly the knowledge, Explainable AI such as that used in Darktrace’s Cyber AI Analyst is needed to interpret the findings of AI, to ensure human teams know what happened, what action (if any) the AI took, and why. 

Conclusion

Every organization is different, and its security should reflect that. However, some fundamental common challenges of AI in cyber security are shared amongst all security teams, regardless of size, resources, industry vertical, and culture. Their cyber strategy and maturity levels are what sets them apart. Maturity is not defined by how many professional certifications or how many years of experience the team has. A mature team works together to solve problems. They understand that while AI is not the silver bullet, it is a powerful bullet that if used right, will autonomously harden the security of the complete digital ecosystem, while augmenting the humans tasked with defending it. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Germaine Tan
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author

Blog

/

Proactive Security

/

October 24, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI