Blog
/
/
December 20, 2022

How to Select the Right Cybersecurity AI

Choosing the right cybersecurity AI is crucial. Darktrace's guide provides insights and tips to help you make an informed decision.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Germaine Tan
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2022

AI has long been a buzzword – we started seeing it utilized in consumer space; in social media, e-commerce, and even in our music preference! In the past few years it has started to make its way through the enterprise space, especially in cyber security.

Increasingly, we see threat actors utilizing AI in their attack techniques. This is inevitable with the advancements in AI technology, the lower barrier to entry to the cyber security industry, and the continued profitability of being a threat actor. Surveying security decision makers across different industries like financial services and manufacturing, 77% of the respondents expect weaponized AI to lead to an increase in the scale and speed of attacks. 

Defenders are also ramping up their use of AI in cyber security – with more than 80% of the respondents agreeing that organizations require advanced defenses to combat offensive AI – resulted in a ‘cyber arms race’ with adversaries and security teams in constant pursuit of the latest technological advancements.  

The rules and signature approach is no longer sufficient in this evolving threat landscape. Because of this collective need, we will continue to see the push of AI innovations in this space as well. By 2025, cyber security technologies will account for 25% of the AI software market.

Despite the intrigue surrounding AI, many people have a limited understanding of how it truly works. The mystery of AI technology is what piques the interest of many cyber security practitioners. As an industry we also know that AI is necessary for advancement, but there is so much noise around AI and machine learning that some teams struggle to understand it. The paradox of choice leaves security teams more frustrated and confused by all the options presented to them.

Identifying True AI

You first need to define what you want the AI technology to solve. This might seem trivial, but many security teams often forget to come back to the fundamentals: what problem are you addressing? What are you trying to improve? 

Not every process needs AI; some processes will simply need automation – these are the more straightforward parts of your business. More complex and bigger systems require AI. The crux is identifying these parts of your business, applying AI and being clear of what you are going to achieve with these AI technologies. 

For example, when it comes to factory floor operations or tracking leave days of employees, businesses employ automation technologies, but when it comes to business decisions like PR strategies or new business exploration, AI is used to predict trends and help business owners make these decisions. 

Similarly, in cyber security, when dealing with known threats such as known malicious malware and hosting sites, automation is great at keeping track of them; workflows and playbooks are also best assessed with automation tools. However, when it comes to unknown unknowns like zero-day attacks, insider threats, IoT threats and supply chain attacks, AI is needed to detect and respond these threats as they emerge.

Automation is often communicated as AI, and it becomes difficult for security teams to differentiate. Automation helps you to quickly make a decision you already know you will make, whereas true AI helps you make a better decision.

Key ways to differentiate true AI from automation:

  • The Data Set: In automation, what you are looking for is very well-scoped. You already know what you are looking for – you are just accelerating the process with rules and signatures. True AI is dynamic. You no longer need to define activities that deserve your attention, the AI highlights and prioritizes this for you.
  • Bias: When you define what you are looking for, as humans inherently we impose our biases on these decisions. We are also limited by our knowledge at that point in time – this leaves out the crucial unknown unknowns.
  • Real-time: Every organization is always changing and it is important that AI takes all that data into consideration. True AI that is real time and also changes with your organization’s growth is hard to find. 

Our AI Research Centre has produced numerous papers on the applications of true AI in cyber security. The Centre comprises of more than 150 members and has more than 100 patents and patents pending. Some of the featured white papers include research on Attack Path Modeling and using AI as a preventative approach in your organization. 

Integrating AI Outputs with People, Process, and Technology


Integrating AI with People

We are living in the time of trust deficit, and that applies to AI as well. As humans we can be skeptical with AI, so how do we build trust for AI such that it works for us? This applies not only to the users of the technology, but the wider organization as well. Since this is the People pillar, the key factors to achieving trust in AI is through education, culture, and exposure. In a culture where people are open to learn and try new AI technologies, we will naturally build trust towards AI over time.

Integrating AI with Process

Then we should consider the integration of AI and its outputs into your workflow and playbooks. To make decisions around that, security managers need to be clear what their security priorities are, or which security gaps a particular technology is meant to fill. Regardless of whether you have an outsourced MSSP/SOC team, 50-strong in-house SOC team, or even just a 2-man team, it is about understanding your priorities and assigning the proper resources to them.

Integrating AI with Technology 

Finally, there is the integration of AI with your existing technology stack. Most security teams deploy different tools and services to help them achieve different goals – whether it is a tool like SIEM, a firewall, an endpoint, or services like pentesting, or vulnerability assessment exercises. One of the biggest challenges is putting all of this information together and pulling actionable insights out of them. Integration on multiple levels is always challenging with complex technologies because they technologies can rate or interpret threats differently.

Security teams often find themselves spending the most time making sense of the output of different tools and services. For example, taking the outcomes from a pentesting report and trying to enhance SOAR configurations, or looking at SOC alerts to advise firewall configurations, or taking vulnerability assessment reports to scope third-party Incident Response teams.

These tools can have a strong mastery of large volumes of data, but eventually ownership of the knowledge should still lie with the human teams – and the way to do that is with continuous feedback and integration. It is no longer efficient to use human teams to carry out this at scale and at speed. 

The Cyber AI Loop is Darktrace’s approach to cyber security. The four product families make up a key aspect of an organization’s cyber security posture. Darktrace PREVENT, DETECT, RESPOND and HEAL each feed back into a continuous, virtuous cycle, constantly strengthening each other’s abilities. 

This cycle augments humans at every stage of an incident lifecycle. For example, PREVENT may alert you to a vulnerability which holds a particularly high risk potential for your organization. It provides clear mitigation advice, and while you are on this, PREVENT will feed into DETECT and RESPOND, which are immediately poised to kick in should an attack occur in the interim. Conversely, once an attack has been contained by RESPOND, it will feed information back into PREVENT which will anticipate an attacker’s likely next move. Cyber AI Loop helps you harden security a holistic way so that month on month, year on year, the organization continuously improves its defensive posture. 

Explainable AI

Despite its complexity, AI needs to produce outputs that are clear and easy to understand in order to be useful. In the heat of the moment during a cyber incident, human teams need to quickly comprehend: What happened here? When did it happen? What devices are affected? What does it mean for my business? What should I deal with first?

To this end, Darktrace applies another level of AI on top of its initial findings that autonomously investigates in the background, reducing a mass of individual security events to just a few overall cyber incidents worthy of human review. It generates natural-language incident reports with all the relevant information for your team to make judgements in an instant. 

Figure 1: An example of how Darktrace filters individual model breaches into incidents and then critical incidents for the human to review 

Cyber AI Analyst does not only take into consideration network detection but also in your endpoints, your cloud space, IoT devices and OT devices. Cyber AI Analyst also looks at your attack surface and the risks associated to triage and show you the most prioritized alerts that if unexpected would cause maximum damage to your organization. These insights are not only delivered in real time but also unique to your environment.

This also helps address another topic that frequently comes up in conversations around AI: false positives. This is of course a valid concern: what is the point of harvesting the value of AI if it means that a small team now must look at thousands of alerts? But we have to remember that while AI allows us to make more connections over the vastness of logs, its goal is not to create more work for security teams, but to augment them instead.

To ensure that your business can continue to own these AI outputs and more importantly the knowledge, Explainable AI such as that used in Darktrace’s Cyber AI Analyst is needed to interpret the findings of AI, to ensure human teams know what happened, what action (if any) the AI took, and why. 

Conclusion

Every organization is different, and its security should reflect that. However, some fundamental common challenges of AI in cyber security are shared amongst all security teams, regardless of size, resources, industry vertical, and culture. Their cyber strategy and maturity levels are what sets them apart. Maturity is not defined by how many professional certifications or how many years of experience the team has. A mature team works together to solve problems. They understand that while AI is not the silver bullet, it is a powerful bullet that if used right, will autonomously harden the security of the complete digital ecosystem, while augmenting the humans tasked with defending it. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Germaine Tan
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI