Blog
/
/
July 14, 2021

Darktrace Detects Egregor Ransomware in Customer Environment

See how Darktrace managed to detect and eliminate an Egregor ransomware extortion attack in a customer environment without the use of any signatures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Jul 2021

Ransomware groups are coming and going faster than ever. In June alone we saw Avaddon release its decryption keys unprompted and disappear from sight, while members of CLOP were arrested in Ukraine. The move follows increasing pressure from the US intelligence community and Ukrainian authorities, who took down Egregor ransomware back in February. Egregor had only been around since September 2020. It survived less than six months.

But these gangs aren’t going away – they are simply going underground. Despite ‘closures’, cases of ransomware continue to rise and new threat actors and independent hackers pop up on the Dark Web every day.

As malware actors lay low and resurface with new variants, keeping up with the stream of signatures and new strains has become untenable. This blog studies the techniques, tools and procedures (TTPs) observed from a real-life Egregor intrusion last autumn, which showcases how Self-Learning AI detected the attack without relying on signatures.

Egregor: Maze reloaded

150 companies
worldwide have fallen victim to Egregor.

Law enforcement authorities have been busy this year. Aside from Egregor and CLOP, actions were taken against Netwalker in Bulgaria and the US, while Europol announced that an international operation had disrupted the core infrastructure of Emotet, one of the most prominent botnets of the past decade.

All parties – from governments down to individual businesses – are taking the threat of ransomware more seriously. In response to this added pressure, cyber-criminals often prefer to shut up shop rather than hang around long enough to be arrested.

DarkSide famously closed down after the Colonial Pipeline attacks, only nine months after it had been created. An admin from the Ziggy gang announced that it would issue refunds and was looking for a job as a threat hunter.

“Hi. I am Ziggy ransomware administrator. We decided to publish all decryption keys.

We are very sad about what we did. As soon as possible, all the keys will be published in this channel.”

Take this apology with a pinch of salt. The players which have ‘closed down’ have not had a change of heart, they’ve just changed tack. Different names and new infrastructure can help keep the heat off and circumvent US sanctions or federal scrutiny. PayloadBIN (a new ransomware which cropped up last month), WastedLocker, Dridex, Hades, Phoenix, Indrik Spider… all just aliases for one single group: Evil Corp.

The FBI are becoming more aggressive in their methods of infiltration and disruption, so it is likely we will see more of these U-turns and guerrilla-style tactics. Temporary pop-up gangs are an emerging trend in place of large, established enterprises like REvil, whose websites also vanished following the attack against Kaseya. And there is no doubt we will continue to witness these ‘exit scams’, where groups retire and re-brand, like Maze did last September, when it came back as Egregor.

Darktrace detects malware regardless of the name or strain. It stopped Maze last year, and, as we shall see below, it stopped its successor Egregor, even though the code and C2 endpoints used in the intrusion had never been seen before.

30%
of ransom profits are taken by Egregor developers.

Egregor ransomware attack

Back in November 2020, Egregor was in full bloom, targeting major organizations and exfiltrating data in ‘double extortion’ attacks. At a logistics company in Europe with around 20,000 active devices, during a Darktrace Proof of Value (POV) trial, Egregor struck.

Figure 1: Timeline of the attack. The overall dwell time — from first C2 connection to encryption — was five days.

As a Ransomware-as-a-Service (RaaS) gang, it appears Egregor had partnered with botnet providers to facilitate initial access. In this case, the compromised device carried signs of prior infection. It was seen connecting to an apparent Webex endpoint, before connecting to the Akamai doppelganger, amajai-technologies[.]network. This activity was followed by a number of command and control (C2) and exfiltration-related breaches.

Three days later, Darktrace observed lateral movement over HTTPS. Another device – a server – was seen connecting to the amajai host. This server wrote unusual numeric exectuables to shared SMB drives and took new service control. A third host then made a ~50GB upload to a rare IP.

Figure 2: Cyber AI Analyst summarizes the initial C2 and unusual SMB writes in a similar incident, followed later by a large upload to a rare external endpoint.

After two days, encryption began. This triggered multiple hosts breaches. On the final day, the attacker made large uploads to various endpoints, all from ostensibly compromised hosts.

Retrospective analysis

$4m
is the highest recorded cost of an Egregor ransom.

If the attack had not been neutralized at this point, it could have resulted in significant financial loss and reputational damage for the company. The two-pronged attack enabled Egregor both to encrypt critical resources and to exfiltrate them, with a view to publicizing sensitive data if the victims refused to pay up.

The affiliates who deployed the ransomware in this case were highly skilled. They leveraged a number of sophisticated techniques including the use of a large number of C2 endpoints, with doppelgangers and off-the-shelf tools.

The adoption of HTTPS for lateral movement and reconnaissance reduced lateral noise for scans and enumeration. The complex C2 had numerous endpoints, some of which were doppelgangers of legitimate sites. Furthermore, some malware was downloaded as masqueraded files: the mimetype Octet Streams were downloaded as ‘g.pixel’. These three tactics helped obfuscate the attacker’s movements and trick traditional security tools.

Ransomware attacks are occurring at a speed that even five years ago was unimaginable. In this case, the overall dwell time was less than a week, and part of the attack happened out of office hours. This highlights the need for Autonomous Response, which can keep up with novel threats and does not rely on humans being in the loop to contain cyber-attacks.

Gone today, here tomorrow

Egregor was busted in February, but we may well see it resurface under a different name and with modified code. If and when this happens, signatures will be of no use. Catching never-before-seen ransomware, which employs novel methods of intrusion and extortion, requires a different approach.

The endpoint in the case study above is now associated via open-source intelligence (OSINT) with Cobalt Strike. But at the time of the investigation, the C2 was unlisted. Similarly, the malware was unknown to OSINT and thus evaded signature-based tools.

Despite this, Self-Learning AI detected every single stage of the in-progress attack. No action was taken as it was only a trial POV so Darktrace had no remote access in the environment. However, after seeing the power of the technology, the organization decided to implement Darktrace across its digital estate.

Thanks to Darktrace analyst Roberto Romeu for his insights on the above threat find.

Learn how Darktrace stops Egregor and all forms of ransomware

Darktrace model detections:

  • Agent Beacon to New Endpoint
  • Agent Beacon (Long Period)
  • Agent Beacon (Medium Period)
  • Agent Beacon (Short Period)
  • Anomalous Octet Stream
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous SMB Followed By Multiple Model Breaches
  • Anomalous SSL without SNI to New External
  • Beaconing Activity To External Rare
  • Beacon to Young Endpoint
  • Data Sent To New External Device
  • Data Sent to Rare Domain
  • DGA Beacon
  • Empire Python Activity Pattern
  • EXE from Rare External Location
  • High Volume of Connections with Beacon Score
  • High Volume of New or Uncommon Service Control
  • HTTP Beaconing to Rare Destination
  • Large Number of Model Breaches
  • Long Agent Connection to New Endpoint
  • Low and Slow Exfiltration
  • Multiple C2 Model Breaches
  • Multiple Connections to New External TCP Port
  • Multiple Failed Connections to Rare Endpoint
  • Multiple Lateral Movement Model Breaches
  • Network Scan
  • New Failed External Connections
  • New or Uncommon Service Control
  • Numeric Exe in SMB Write
  • Rare External SSL Self-Signed
  • Slow Beaconing Activity To External Rare
  • SMB Drive Write
  • SMB Enumeration
  • SSL Beaconing to Rare Destination
  • SSL or HTTP Beacon
  • Suspicious Beaconing Behaviour
  • Suspicious Self-Signed SSL
  • Sustained SSL or HTTP Increase
  • Quick and Regular Windows HTTP Beaconing
  • Uncommon 1 GiB Outbound
  • Unusual BITS Activity
  • Unusual Internal Connections
  • Unusual SMB Version 1 Connectivity
  • Zip or Gzip from Rare External Location

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

Network

/

November 27, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery SystemDefault blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI