Blog
/
Network
/
January 4, 2023

BlackMatter's Smash-and-Grab Ransom Attack Incident Analysis

Stay informed on cybersecurity trends! Read about a BlackMatters ransom attack incident and Darktrace's analysis on how RESPOND could have stopped the attack.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Analyst Team
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jan 2023

Only a few years ago, popular reporting announced that the days of smash-and-grab attacks were over and that a new breed of hackers were taking over with subtler, ‘low-and-slow’ tactics [1]. Although these have undoubtedly appeared, smash-and-grab have quickly become overlooked – perhaps with worrying consequences. Last year, Google saw repeated phishing campaigns using cookie theft malware and most recently, reports of hacktivists using similar techniques have been identified during the 2022 Ukraine Conflict [2 & 3]. Where did their inspiration come from? For larger APT groups such as BlackMatter, which first appeared in the summer of 2021, smash-and-grabs never went out of fashion.

This blog dissects a BlackMatter ransomware attack that hit an organization trialing Darktrace back in 2021. The case reveals what can happen when a security team does not react to high-priority alerts. 

When entire ransomware attacks can be carried out over the course of just 48 hours, there is a high risk to relying on security teams to react to detection notifications and prevent damage before the threat escalates. Although there has been hesitancy in its uptake [4], this blog also demonstrates the need for automated response solutions like Darktrace RESPOND.

The Name Game: Untangling BlackMatter, REvil, and DarkSide

Despite being a short-lived criminal organization on the surface [5], a number of parallels have now been drawn between the TTPs (Tactics, Techniques and Procedures) of the newer BlackMatter group and those of the retired REvil and DarkSide organizations [6]. 

Prior to their retirement, DarkSide and REvil were perhaps the biggest names in cyber-crime, responsible for two of last year’s most devastating ransomware attacks. Less than two weeks after the Colonial Pipeline attack, DarkSide announced it was shutting down its operation [7]. Meanwhile the FBI shutdown REvil in January 2022 after its devastating Fourth of July Kaseya attacks and a failed return in September [8]. It is now suspected that members from one or both went on to form BlackMatter.

This rebranding strategy parallels the smash-and-grab attacks these groups now increasingly employ: they make their money, and a lot of noise, and when they’re found out, they disappear before organizations or governments can pull together their threat intelligence and organize an effective response. When they return days, weeks or months later, they do so having implemented enough small changes to render themselves and their attacks unrecognizable. That is how DarkSide can become BlackMatter, and how its attacks can slip through security systems trained on previously encountered threats. 

Attack Details

In September 2021 Darktrace was monitoring a US marketing agency which became the victim of a double extortion ransomware attack that bore hallmarks of a BlackMatter operation. This began when a single domain-authenticated device joined the company’s network. This was likely a pre-infected company device being reconnected after some time offline. 

Only 15 minutes after joining, the device began SMB and ICMP scanning activities towards over 1000 different internal IPs. There was also a large spike of requests for Epmapper, which suggested an intent for RPC-based lateral movement. Although one credential was particularly prominent, multiple were used including labelled admin credentials. Given it’s unexpected nature, this recon quickly triggered a chain of DETECT/Network model breaches which ensured that Darktrace’s SOC were alerted via the Proactive Threat Notification service. Whilst SOC analysts began to triage the activity, the organization failed to act on any of the alerts they received, leaving the detected threat to take root within their digital environment. 

Shortly after, a series of C2 beaconing occurred towards an endpoint associated with Cobalt Strike [9]. This was accompanied by a range of anomalous WMI bind requests to svcctl, SecAddr and further RPC connections. These allowed the initial compromised device to quickly infect 11 other devices. With continued scanning over the next day, valuable data was soon identified. Across several transfers, 230GB of internal data was then exfiltrated from four file servers via SSH port 22. This data was then made unusable to the organization through encryption occurring via SMB Writes and Moves/Renames with the randomly generated extension ‘.qHefKSmfd’. Finally a ransom note titled ‘qHefKSmfd.README.txt’ was dropped.

This ransom note was appended with the BlackMatter ASCII logo:

Figure 1- The ASCII logo which accompanied BlackMatter’s ransom note

Although Darktrace DETECT and Cyber AI Analyst continued to provide live alerting, the actor successfully accomplished their mission.  

There are numerous reasons that an organization may fail to organize a response to a threat, (including resource shortages, out of hours attacks, and groups that simply move too fast). Without Darktrace’s RESPOND capabilities enabled, the threat actors could proceed this attack without obstacles. 

Figure 2- Cyber AI Analyst breaks down the stages of the attack [Note: this screenshot is from V5 of DETECT/Network] 

How would the attack have unfolded with RESPOND?

Armed with Darktrace’s evolving knowledge of ‘self’ for the customer’s unique digital environment, RESPOND would have activated within seconds of the first network scan, which was recognized as highly anomalous. The standard action taken here would usually involve enforcing the standard ‘pattern of life’ for the compromised device over a set time period in order to halt the anomaly while allowing the business to continue operating as normal.

RESPOND constantly re-evaluates threats as attacks unfold. Had the first stage still been successful, it would have continued to take targeted action at each corresponding stage of this attack. RESPOND models would have alerted to block the external connections to C2 servers over port 443, the outbound exfil attempts and crucially the SMB write activity over port 445 related to encryption.

As DETECT and RESPOND feed into one another, Darktrace would have continued to assess its actions as BlackMatter pivoted tactics. These actions buy back critical time for security teams that may not be in operation over the weekend, and stun the attacker into place without applying overly aggressive responses that create more problems than they solve.

Ultimately although this incident did not resolve autonomously, in response to the ransom event, Darktrace offered to enable RESPOND and set it in active mode for ransomware indicators across all client and server devices. This ensured an event like this would not occur again. 

Why does RESPOND work?

Response solutions must be accurate enough to fire only when there is a genuine threat, configurable enough to let the user stay in the driver’s seat, and intelligent enough to know the right action to take to contain only the malicious activity- without disrupting normal business operations. 

This is only possible if you can establish what ‘normal’ is for any one organization. And this is how Darktrace’s RESPOND product family ensures its actions are targeted and proportionate. By feeding off DETECT alerting which highlights subtle or large deviations across the network, cloud and SaaS, RESPOND can provide a measured response to the potential threat. This includes actions such as:

  • Enforcing the device’s ‘pattern of life’ for a given length of time 
  • Enforcing the ‘group pattern of life’ (stopping a device from doing anything its peers haven’t done in the past)
  • Blocking connections of a certain type to a certain destination
  • Logging out of a cloud account 
  • ‘Smart quarantining’ an endpoint device- maintaining access to VPNs and company’s AV solution

Conclusion 

In its report on BlackMatter [10], CISA recommended that organizations invest in network monitoring tools with the capacity to investigate anomalous activity. Picking up on unusual behavior rather than predetermined rules and signatures is an important step in fighting back against new threats. As this particular story shows, however, detection alone is not always enough. Turning on RESPOND, which takes immediate and precise action to contain threats, regardless of when and where they come in, is the best way to counter smash-and-grab attacks and protect organizations’ digital assets. There is little doubt that the threat actors behind BlackMatter will or have already returned with new names and strategies- but organizations with RESPOND will be ready for them.

Appendices

Darktrace Model Detections (in order of breach)

Those with the ‘PTN’ prefix were alerted directly to Darktrace’s 24/7 SOC team.

  • Device / ICMP Address Scan
  • Device / Suspicious SMB Scanning Activity
  • (PTN) Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Possible RPC Lateral Movement
  • Device / Active Directory Reconnaissance
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Default Credential Usage
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Uncommon SMB Named Pipe
  • Device / SMB Session Bruteforce
  • Device / New or Uncommon WMI Activity
  • (PTN) Device / Multiple Lateral Movement Model Breaches
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Long Agent Connection to New Endpoint
  • Compliance / SMB Drive Write
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compliance / SSH to Rare External Destination
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Download and Upload
  • (PTN) Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • (PTN) Compromise / Ransomware / Suspicious SMB Activity

List of IOCs 

Reference List 

[1] https://www.designnews.com/industrial-machinery/new-age-hackers-are-ditching-smash-and-grab-techniques 

[2] https://cybernews.com/cyber-war/how-do-smash-and-grab-cyberattacks-help-ukraine-in-waging-war/

[3] https://blog.google/threat-analysis-group/phishing-campaign-targets-youtube-creators-cookie-theft-malware/

[4] https://www.ukcybersecuritycouncil.org.uk/news-insights/articles/the-benefits-of-automation-to-cyber-security/

[5] https://techcrunch.com/2021/11/03/blackmatter-ransomware-shut-down/ 

[6] https://www.trellix.com/en-us/about/newsroom/stories/research/blackmatter-ransomware-analysis-the-dark-side-returns.html

[7] https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html

[8] https://techcrunch.com/2022/01/14/fsb-revil-ransomware/ 

[9] https://www.virustotal.com/gui/domain/georgiaonsale.com/community

[10] https://www.cisa.gov/uscert/ncas/alerts/aa21-291a

Credit to: Andras Balogh, SOC Analyst and Gabriel Few-Wiegratz, Threat Intelligence Content Production Lead

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Analyst Team

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI