Blog
/
Network
/
January 4, 2023

BlackMatter's Smash-and-Grab Ransom Attack Incident Analysis

Stay informed on cybersecurity trends! Read about a BlackMatters ransom attack incident and Darktrace's analysis on how RESPOND could have stopped the attack.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Analyst Team
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jan 2023

Only a few years ago, popular reporting announced that the days of smash-and-grab attacks were over and that a new breed of hackers were taking over with subtler, ‘low-and-slow’ tactics [1]. Although these have undoubtedly appeared, smash-and-grab have quickly become overlooked – perhaps with worrying consequences. Last year, Google saw repeated phishing campaigns using cookie theft malware and most recently, reports of hacktivists using similar techniques have been identified during the 2022 Ukraine Conflict [2 & 3]. Where did their inspiration come from? For larger APT groups such as BlackMatter, which first appeared in the summer of 2021, smash-and-grabs never went out of fashion.

This blog dissects a BlackMatter ransomware attack that hit an organization trialing Darktrace back in 2021. The case reveals what can happen when a security team does not react to high-priority alerts. 

When entire ransomware attacks can be carried out over the course of just 48 hours, there is a high risk to relying on security teams to react to detection notifications and prevent damage before the threat escalates. Although there has been hesitancy in its uptake [4], this blog also demonstrates the need for automated response solutions like Darktrace RESPOND.

The Name Game: Untangling BlackMatter, REvil, and DarkSide

Despite being a short-lived criminal organization on the surface [5], a number of parallels have now been drawn between the TTPs (Tactics, Techniques and Procedures) of the newer BlackMatter group and those of the retired REvil and DarkSide organizations [6]. 

Prior to their retirement, DarkSide and REvil were perhaps the biggest names in cyber-crime, responsible for two of last year’s most devastating ransomware attacks. Less than two weeks after the Colonial Pipeline attack, DarkSide announced it was shutting down its operation [7]. Meanwhile the FBI shutdown REvil in January 2022 after its devastating Fourth of July Kaseya attacks and a failed return in September [8]. It is now suspected that members from one or both went on to form BlackMatter.

This rebranding strategy parallels the smash-and-grab attacks these groups now increasingly employ: they make their money, and a lot of noise, and when they’re found out, they disappear before organizations or governments can pull together their threat intelligence and organize an effective response. When they return days, weeks or months later, they do so having implemented enough small changes to render themselves and their attacks unrecognizable. That is how DarkSide can become BlackMatter, and how its attacks can slip through security systems trained on previously encountered threats. 

Attack Details

In September 2021 Darktrace was monitoring a US marketing agency which became the victim of a double extortion ransomware attack that bore hallmarks of a BlackMatter operation. This began when a single domain-authenticated device joined the company’s network. This was likely a pre-infected company device being reconnected after some time offline. 

Only 15 minutes after joining, the device began SMB and ICMP scanning activities towards over 1000 different internal IPs. There was also a large spike of requests for Epmapper, which suggested an intent for RPC-based lateral movement. Although one credential was particularly prominent, multiple were used including labelled admin credentials. Given it’s unexpected nature, this recon quickly triggered a chain of DETECT/Network model breaches which ensured that Darktrace’s SOC were alerted via the Proactive Threat Notification service. Whilst SOC analysts began to triage the activity, the organization failed to act on any of the alerts they received, leaving the detected threat to take root within their digital environment. 

Shortly after, a series of C2 beaconing occurred towards an endpoint associated with Cobalt Strike [9]. This was accompanied by a range of anomalous WMI bind requests to svcctl, SecAddr and further RPC connections. These allowed the initial compromised device to quickly infect 11 other devices. With continued scanning over the next day, valuable data was soon identified. Across several transfers, 230GB of internal data was then exfiltrated from four file servers via SSH port 22. This data was then made unusable to the organization through encryption occurring via SMB Writes and Moves/Renames with the randomly generated extension ‘.qHefKSmfd’. Finally a ransom note titled ‘qHefKSmfd.README.txt’ was dropped.

This ransom note was appended with the BlackMatter ASCII logo:

Figure 1- The ASCII logo which accompanied BlackMatter’s ransom note

Although Darktrace DETECT and Cyber AI Analyst continued to provide live alerting, the actor successfully accomplished their mission.  

There are numerous reasons that an organization may fail to organize a response to a threat, (including resource shortages, out of hours attacks, and groups that simply move too fast). Without Darktrace’s RESPOND capabilities enabled, the threat actors could proceed this attack without obstacles. 

Figure 2- Cyber AI Analyst breaks down the stages of the attack [Note: this screenshot is from V5 of DETECT/Network] 

How would the attack have unfolded with RESPOND?

Armed with Darktrace’s evolving knowledge of ‘self’ for the customer’s unique digital environment, RESPOND would have activated within seconds of the first network scan, which was recognized as highly anomalous. The standard action taken here would usually involve enforcing the standard ‘pattern of life’ for the compromised device over a set time period in order to halt the anomaly while allowing the business to continue operating as normal.

RESPOND constantly re-evaluates threats as attacks unfold. Had the first stage still been successful, it would have continued to take targeted action at each corresponding stage of this attack. RESPOND models would have alerted to block the external connections to C2 servers over port 443, the outbound exfil attempts and crucially the SMB write activity over port 445 related to encryption.

As DETECT and RESPOND feed into one another, Darktrace would have continued to assess its actions as BlackMatter pivoted tactics. These actions buy back critical time for security teams that may not be in operation over the weekend, and stun the attacker into place without applying overly aggressive responses that create more problems than they solve.

Ultimately although this incident did not resolve autonomously, in response to the ransom event, Darktrace offered to enable RESPOND and set it in active mode for ransomware indicators across all client and server devices. This ensured an event like this would not occur again. 

Why does RESPOND work?

Response solutions must be accurate enough to fire only when there is a genuine threat, configurable enough to let the user stay in the driver’s seat, and intelligent enough to know the right action to take to contain only the malicious activity- without disrupting normal business operations. 

This is only possible if you can establish what ‘normal’ is for any one organization. And this is how Darktrace’s RESPOND product family ensures its actions are targeted and proportionate. By feeding off DETECT alerting which highlights subtle or large deviations across the network, cloud and SaaS, RESPOND can provide a measured response to the potential threat. This includes actions such as:

  • Enforcing the device’s ‘pattern of life’ for a given length of time 
  • Enforcing the ‘group pattern of life’ (stopping a device from doing anything its peers haven’t done in the past)
  • Blocking connections of a certain type to a certain destination
  • Logging out of a cloud account 
  • ‘Smart quarantining’ an endpoint device- maintaining access to VPNs and company’s AV solution

Conclusion 

In its report on BlackMatter [10], CISA recommended that organizations invest in network monitoring tools with the capacity to investigate anomalous activity. Picking up on unusual behavior rather than predetermined rules and signatures is an important step in fighting back against new threats. As this particular story shows, however, detection alone is not always enough. Turning on RESPOND, which takes immediate and precise action to contain threats, regardless of when and where they come in, is the best way to counter smash-and-grab attacks and protect organizations’ digital assets. There is little doubt that the threat actors behind BlackMatter will or have already returned with new names and strategies- but organizations with RESPOND will be ready for them.

Appendices

Darktrace Model Detections (in order of breach)

Those with the ‘PTN’ prefix were alerted directly to Darktrace’s 24/7 SOC team.

  • Device / ICMP Address Scan
  • Device / Suspicious SMB Scanning Activity
  • (PTN) Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Possible RPC Lateral Movement
  • Device / Active Directory Reconnaissance
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Default Credential Usage
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Uncommon SMB Named Pipe
  • Device / SMB Session Bruteforce
  • Device / New or Uncommon WMI Activity
  • (PTN) Device / Multiple Lateral Movement Model Breaches
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Long Agent Connection to New Endpoint
  • Compliance / SMB Drive Write
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compliance / SSH to Rare External Destination
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Download and Upload
  • (PTN) Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • (PTN) Compromise / Ransomware / Suspicious SMB Activity

List of IOCs 

Reference List 

[1] https://www.designnews.com/industrial-machinery/new-age-hackers-are-ditching-smash-and-grab-techniques 

[2] https://cybernews.com/cyber-war/how-do-smash-and-grab-cyberattacks-help-ukraine-in-waging-war/

[3] https://blog.google/threat-analysis-group/phishing-campaign-targets-youtube-creators-cookie-theft-malware/

[4] https://www.ukcybersecuritycouncil.org.uk/news-insights/articles/the-benefits-of-automation-to-cyber-security/

[5] https://techcrunch.com/2021/11/03/blackmatter-ransomware-shut-down/ 

[6] https://www.trellix.com/en-us/about/newsroom/stories/research/blackmatter-ransomware-analysis-the-dark-side-returns.html

[7] https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html

[8] https://techcrunch.com/2022/01/14/fsb-revil-ransomware/ 

[9] https://www.virustotal.com/gui/domain/georgiaonsale.com/community

[10] https://www.cisa.gov/uscert/ncas/alerts/aa21-291a

Credit to: Andras Balogh, SOC Analyst and Gabriel Few-Wiegratz, Threat Intelligence Content Production Lead

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Analyst Team

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI