Sellen Construction Boosts Cloud Security with Darktrace AI
08
Sep 2021
Sellen Construction enhances cybersecurity with Darktrace AI & Microsoft, utilizing cutting-edge tech to secure their operations and remote workers.
At Sellen Construction, safety is our top priority. We are one of the largest general contractors in the Pacific Northwest — we’ve changed tourist maps and helped grow the Seattle skyline. We are proud of our contribution to community structures, from high-rises and hospitals to campuses and high-tech facilities.
The Darktrace-Microsoft dynamic
All of our cloud applications that help us do our job – help us build great – are center to our digital strategy. We are true partners with Microsoft, not only are we a Microsoft 365 customer, but we have worked with them on their construction projects, even building one of the original sections of the Microsoft Campus.
Our digital ecosystem is centered around Microsoft: it’s our knowledge base, document management system, automation and analytics platform – it powers our day-to-day work and helps us deliver to our clients.
Darktrace is a critical component of our security stack because it protects our digital ecosystem and keeps us safe. When we first implemented Darktrace, we put in place the Enterprise Immune System to protect our infrastructure, and we’ve since added Darktrace for SaaS for total coverage. So not only do we have eyes across our digital estate detecting threats immediately, we also have the power of Autonomous Response. Darktrace for SaaS works with Microsoft seamlessly – the technology takes targeted action to contain in-progress threats in real time. It brings a sense of calm, knowing we have Darktrace and Microsoft in concert keeping our landscape safe.
When Autonomous Response stops a bad behavior, shutting down something that could be dangerous, it buys us time. It keeps everyone safe by automatically shutting down the behavior so we can really evaluate what happened. We wouldn’t have that without a 24-hour SOC. And it stairsteps our users back to where it is safe to go without stopping their whole work day.
AI threat analysis
We do all of this with a small but mighty technology team. So it has been critical that we are supported with the augmenting power of AI. We have a Security Operations SWAT Team and Darktrace has been a key extension of our team efforts. We rely on the Cyber AI Analyst like another team member.
The Darktrace Cyber AI Analyst is an AI-powered threat analyst. It’s like an extension of Darktrace’s analysts but supercharged with the speed and scale of AI. It has greatly influenced our workflow — supporting our staff by helping them more immediately triage what happens on our infrastructure.
The AI Analyst is another application of Darktrace’s unique machine learning. It can serve up a prioritized list of suspicious behavior that we can tackle and we can also be alerted to major events, even through our phones via the Mobile App. We keep Darktrace close at all times.
Protecting remote workers
Extending Darktrace’s Self-Learning AI to the endpoint gave us the chance to adjust to our remote network, because even now, not everyone is back in the office. As we untether from the corporate VPN, and move more and more into our SharePoint and Microsoft world, our day-to-day continues to shift. Darktrace has been profound in highlighting interesting behavior on our endpoint devices. For example, we know there has been a surge in crypto-mining activity on our infrastructure. We wouldn’t have caught that without Darktrace. We have eyes like never before.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Jenny Moshea
Chief Information Officer, Sellen Construction
As Sellen’s CIO, Jenny leads the company’s technology vision and roadmap that encompasses digital transformation, construction lifecycle applications, emerging technology, network infrastructure, service management, and cyber security.
Onomastics Gymnastics : How Darktrace Detects Spoofing and Business Email Compromise in Multi-Name Users
Note: For privacy reasons, actual surnames and email addresses observed in these incidents below have been replaced with fictitious placeholder names, using the common Spanish names “Fulano” and “Mengano”.
Naming conventions
Modeling names and their variants of members of an organization is a critical component to properly detect if those same names and variants are being spoofed by malicious actors. For many predominantly English-speaking organizations, these variants can largely be captured by variants of a person’s given name (e.g. James-Jimmy-Jim) and a consistent, singular surname or family name (e.g. Smith). Naming conventions, however, are far from universal. This piece will review how Darktrace / EMAIL manages the common naming conventions of much of the Spanish-speaking world, and can use its modeling to create high-fidelity detections of multiple types of spoofing attempts.
A brief summary of the common convention across Spain and much of Spanish-speaking America: most people are given one or two given names (e.g. Roberto, Juan, María, Natalia), and their surnames are the first surname of their father, followed by the first surname of their mother. While there are various exceptions to this norm, the below graphic Wikipedia [1][2] highlights the general rule.
Detection of improper name usage
Implicit in the above comment that shortening to one surname follows the convention of using the first surname, shortening to the second surname is often a tell-tale sign of someone unfamiliar with the person or their broader culture. This can be a useful corroborating feature in detecting a spoof attempt – analogous to a spelling error.
In the case of a Spanish customer, this misuse of name shortening contributed to the detection of a spoof attempt trying to solicit a response by impersonating an internal user forwarding information about ‘Data Protection’.
While the limited communication history from the sender and the nature of the text content already marks the mail as suspicious, Darktrace / EMAIL notes the personal name used in the email is similar to a high-value user (‘whale’ to use the terminology of spearphishing). The additional context provided by the detection of the attempted spoof prompted more severe actioning of this email, leading to a ‘Hold’ action instead of a less-severe ‘Unspoof’ action via a banner on the email.
Malicious email properly using both surnames
Misusing the name-shortening convention is not the only way that Darktrace / EMAIL can detect spoofing attempts. In the case of another Spanish customer, Darktrace observed a whale impersonation being sent to 230 users with solicitation content, but no links or attachments. Although the name was modeled internally in the “Surname, Given-name” format, Darktrace identified the spoofing attempt targeting a high-value user and took action, blocking the series of emails from reaching end-user inboxes to prevent unsuspecting users from responding.
In Summary: A case of onomastics gymnastics
The variety in valid usage of human language can be a barrier to evaluating when a given text is benign or malicious. Despite this, Darktrace / EMAIL is designed to manage this variety, as exemplified by the detections of two spoofing attempts seen against organizations using the distinct Spanish-speaking world’s common naming convention. The scope of this design as seen in this onomastic context, extends to a wide range of detections surrounding emails and their behavioral anomalies.
Credit to Roberto Romeu (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst) and Natalia Sánchez Rocafort (Senior Analyst Consultant).
Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.
Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
Experience 20-25% more threat blocking power with Darktrace / EMAIL
Stop the 58% of threats bypassing traditional email security
Understanding the NERC-CIP015 Internal Network Security Monitoring (INSM) Requirements
Background: NERC CIP-015
In January of 2023 the Federal Energy Regulatory Commission (FERC) released FERC Order 887 which addresses a critical security gap in Critical Infrastructure Protection (CIP) standards, the lack of internal network security monitoring (INSM).
The current NERC CIP standards only require solutions that use traditional detection systems that identify malicious code based on known rules and signatures. The new legislation will now require electric cooperatives to implement INSMs to detect malicious activity in east-west network traffic. INSMs establish a baseline of network activity and detect anomalies that would bypass traditional detection systems, improving an organization’s ability to detect novel threats. Without INSM, organizations have limited visibility into malicious activities inside their networks, leaving them vulnerable if attackers breach initial defenses like firewalls and anti-virus software.
Implementation of NERC CIP-015
Once approved, Bulk Electronic Systems (BESs) will have 36 months to implement INSM, and medium-impact BESs with external routable connectivity (ERC) will have 60 months to do so.
While the approval of the NERC CIP-015 requirements have not been finalized, preparation on the part of electric cooperatives should start as soon as possible. Darktrace is committed to helping electric cooperatives meet the requirements for INSM and help reach compliance standards.
Why is internal network security monitoring important?
NERC CIP-015 aims to enhance the detection of anomalies or unauthorized network activity within CIP environments, underscoring the importance of monitoring East-West traffic within trust zones. This approach enables faster response and recovery times.
INSMs are essential to detecting threats that bypass traditional defenses. For example, insider threats, sophisticated new attack techniques, and threats that exploit compromised credentials—such as those obtained through phishing or other malicious activities—can easily bypass traditional firewalls and antivirus software. These threats either introduce novel methods or leverage legitimate access, making them difficult to detect.
INSMs don’t rely on rules and signatures to detect anomalous activity, they spot abnormalities in network traffic and create alerts based on this activity making them vital to detecting sophisticated threats. Additionally, INSM sits behind the firewall and provides detections utilizing the passive monitoring of east west and north south traffic within the enforcement boundary.
Buyers should be aware of the discrepancies between different INSMs. Some systems require constant tuning and updating, external connectivity forcing holes in segmentation or have intrusive deployments that put sensitive OT assets at risk.
What are the NERC CIP-015 requirements?
The goal of this directive is to ensure that cyber threats are identified early in the attack lifecycle by mandating implementation of security systems that detect and speed up mitigation of malicious activity.
The requirements are divided into three sections:
Network security monitoring
Data retention for anomalous activity
Data protection
NERC CIP-015 emphasizes the importance of having documented processes and evidence of implementation, with a focus on risk-based monitoring, anomaly detection, evaluation, retention of data, and protection against unauthorized access. Below is a breakdown of each requirement.
R1: Network Security Monitoring
The NERC CIP-015 requires the implementation of and a documented process for monitoring networks within Electronic Security Perimeters (ESPs) that contain high and medium impact BES Cyber Systems.
Key parts:
Part 1.1: Use a risk-based rationale to implement network data feeds that monitor connections, devices, and communications.
Part 1.2: Detect anomalous network activity using the data feeds.
Part 1.3: Evaluate the anomalous activity to determine necessary actions.
M1: Evidence for R1 Implementation: Documentation of processes, including risk-based rationale for data collection, detection events, configuration settings, and network baselines.
Incorporating automated solutions for network baselining is essential for effective internal monitoring, especially in diverse environments like substations and control centers. Each environment requires unique baselines—what’s typical for a substation may differ significantly from a control center, making manual monitoring impractical.
A continuous internal monitoring solution powered by artificial intelligence (AI) simplifies this challenge by instantly detecting all connected assets, dynamically learning the environment’s baseline behavior, and identifying anomalies in real-time. Unlike traditional methods, Darktrace’s AI-driven approach requires no external connectivity or repeated tuning, offering a seamless, adaptive solution for maintaining secure operations across all environments.
R2: Data Retention for Anomalous Activity
Documented processes must be in place to retain network security data related to detected anomalies until the required actions are completed.
Note: Data that does not relate to detected anomalies (Part 1.2) is not required to be retained.
M2: Evidence for Data Retention (R2): Documentation of data retention processes, system configurations, or reports showing compliance with R2.
R3: Data Protection: Implement documented processes to protect the collected security monitoring data from unauthorized deletion or modification.
M3: Evidence for Data Protection (R3): Documentation demonstrating how network security monitoring data is protected from unauthorized access or changes.
How to choose the right INSM for your organization?
Several vendors will offer INSM, but how do you choose the right solution for your organization?
Here are seven questions to help you get started evaluating potential INSM vendors:
How does the solution help with ongoing compliance and reporting including CIP-015? Or any other regulations we comply with?
Does the solution provide real-time monitoring of east-west traffic across critical systems? And what kind of threats has it proven capable of finding?
How deep is the traffic visibility—does it offer Layer 7 (application) insights, or is it limited to Layers 3-4?
Is the solution compatible with our existing infrastructure (firewalls, IDS/IPS, SIEM, OT networks)?
Is this solution inline, passive, or hybrid? What impact will it have on network latency?
Does the vendor have experience with electric utilities or critical infrastructure environments?
Where and how are logs and monitoring data stored?
How Darktrace helps electric utilities with INSM requirements
Darktrace's ActiveAI Security Platform is uniquely designed to continuously monitor network activity and detect anomalous activity across both IT and OT environments successfully detecting insider threats and novel ransomware, while accelerating time to detection and incident reporting.
Most INSM solutions require repeated baselining, which creates more work and increases the likelihood of false positives, as even minor deviations trigger alerts. Since networks are constantly changing, baselines need to adjust in real time. Unlike these solutions, Darktrace does not depend on external connectivity or cloud access over the public internet. Our passive network analysis requires no agents or intrusive scanning, minimizing disruptions and reducing risks to OT systems.
Darktrace's AI-driven threat detection, asset management, and incident response capabilities can help organizations comply with the requirements of NERC CIP-015 for internal network security monitoring and data protection. Built specifically to deploy in OT environments, Darktrace / OT comprehensively manages, detects, evaluates, and protects network activity and anomalous events across IT and OT environments, facilitating adherence to regulatory requirements like data retention and anomaly management.
See how INSM with Darktrace can enhance your security operations, schedule a personalized demo today.
Disclaimer
The information provided in this blog is intended for informational purposes only and reflects Darktrace’s understanding of the NERC CIP-015 INSM requirements as of the publication date. While every effort has been made to ensure the accuracy and reliability of the content, Darktrace makes no warranties or representations regarding its accuracy, completeness, or applicability to specific situations. This blog does not constitute legal or compliance advice and readers are encouraged to consult with qualified professionals for guidance specific to their circumstances. Darktrace disclaims any liability for actions taken or not taken based on the information contained herein.