Blog
/
Network
/
February 6, 2025

Reimagining Your SOC: Unlocking a Proactive State of Security

Reimagining your SOC Part 3/3: This blog explores the challenges security professionals face in managing cyber risk, evaluates current market solutions, and outlines strategies for building a proactive security posture.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2025

Part 1: How to Achieve Proactive Network Security

Part 2: Overcoming Alert Fatigue with AI-Led Investigations  

While the success of a SOC team is often measured through incident management effectiveness (E.g MTTD, MTTR), a true measure of maturity is the reduction of annual security incidents.

Organizations face an increasing number of alerts each year, yet the best SOC teams place focus on proactive operations which don’t reduce the threshold for what becomes an incident but targets the source risks that prevent them entirely.

Freeing up time to focus on cyber risk management is a challenge in and of itself, we cover this in the previous two blogs in this series (see above). However, when the time comes to manage risk, there are several challenges that are unique when compared to detection & response functions within cybersecurity.

Why do cyber risks matter?

While the volume of reported CVEs is increasing at an alarming rate[1], determining the criticality of each vulnerability is becoming increasingly challenging, especially when the likelihood and impact may be different for each organization. Yet vulnerabilities have stood as an important signpost in traditional security and mitigation strategies. Now, without clear prioritization, potentially severe risks may go unreported, leaving organizations exposed to significant threats.

Vulnerabilities also represent just one area of potential risks. Cyberattacks are no longer confined to a single technology type. They now traverse various platforms, including cloud services, email systems, and networks. As technology infrastructure continues to expand, so does the attack surface, making comprehensive visibility across all technology types essential for reducing risk and preventing multi-vector attacks.

However, achieving this visibility is increasingly difficult as infrastructure grows and the cyber risk market remains oversaturated. This visibility challenge extends beyond technology to include personnel and individual cyber hygiene which can still exacerbate broader cyberattacks whether malicious or not.

Organizations must adopt a holistic approach to preventative security. This includes improving visibility across all technology types, addressing human risks, and mobilizing swiftly against emerging security gaps.

“By 2026, 60% of cybersecurity functions will implement business-impact-focused risk assessment methods, aligning cybersecurity strategies with organizational objectives.” [2]

The costs of a fragmented approach

siloed preventative security measures or technologies
Figure 1: Organizations may have a combination of siloed preventative security measures or technologies in place

Unlike other security tools (like SIEM, NDR or SOAR) which contain an established set of capabilities, cyber risk reduction has not traditionally been defined by a single market, rather a variety of products and practices that each provide their own value and are overwhelming if too many are adopted. Just some examples include:

  • Threat and Vulnerability management: Leverages threat intelligence, CVEs and asset management; however, leaves teams with significant patching workflows, ignores business & human factors and is reliant on the speed of teams to keep up with each passing update.  
  • Continuous Controls Monitoring (CCM): Automatically audits the effectiveness of security controls based on industry frameworks but requires careful prioritization and human calculations to set-up effectively. Focuses solely on mobilization.
  • Breach and Attack Simulation (BAS): Automates security posture testing through mock scenarios but require previous prioritization and might not tell you how your specific technologies can be mitigated to reduce that risk.
  • Posture Management technologies: Siloed approaches across Cloud, SaaS, Data Security and even Gen AI that reactively assess misconfigurations and suggest improvements but with only industry frameworks to validate the importance of the risks.
  • Red teaming & Penetration testing: Required by several regulations including (GDPR, HIPPA, PCI, DSS), many organizations hire 'red teams' to perform real breaches in trusted conditions. Penetration tests reveal many flaws, but are not continuous, requiring third-party input and producing long to-do lists with input of broader business risk dependent on the cost of the service.
  • Third-party auditors: Organizations also use third-party auditors to identify assets with vulnerabilities, grade compliance, and recommend improvements. At best, these exercises become tick-box exercises for companies to stay in compliance with the responsibility still on the client to perform further discovery and actioning.

Many of these individual solutions on the market offer simple enhancement, or an automated version of an existing human security task. Ultimately, they lack an understanding of the most critical assets at your organization and are limited in scope, only working in a specific technology area or with the data you provide.

Even when these strategies are complete, implementation of the results require resources, coordination, and buy-in from IT, cybersecurity, and compliance departments. Given the nature of modern business structures, this can be labor and time intensive as responsibilities are shared by organizational segmentation spread across IT, governance, risk and compliance (GRC), and security teams.

Prioritize your true cyber risk with a CTEM approach

Organizations with robust security programs benefit from well-defined policies, standards, key risk indicators (KRIs), and operational metrics, making it easier to measure and report cyber risk accurately.

Implementing a framework like Gartner’s CTEM (Continuous Threat Exposure Management) can help governance by defining the most relevant risks to each organization and which specific solutions meet your improvement needs.

This five-step approach—scoping, discovery, prioritization, validation, and mobilization—encourages focused management cycles, better delegation of responsibilities and a firm emphasis on validating potential risks through technological methods like attack path modeling or breach and attack simulation to add credibility.

Implementing CTEM requires expertise and structure. This begins with an exposure management solution developed uniquely alongside a core threat detection and response offering, to provide visibility of an organization’s most critical risks, whilst linking directly to their incident-based workflows.

“By 2026, organizations prioritizing their security investments, based on a continuous threat exposure management program, will realize a two-third reduction in breaches.” [3]

Achieving a proactive security posture across the whole estate

Unlike conventional tools that focus on isolated risks, Darktrace / Proactive Exposure Management breaks down traditional barriers. Teams can define risk scopes with full, prioritized visibility of the critical risks between: IT/OT networks, email, Active Directory, cloud resources, operational groups, (or even the external attack surface by integrating with Darktrace / Attack Surface Management).

Our innovative, AI-led risk discovery provides a view that mirrors actual attacker methodologies. It does this through advanced algorithms that determine risk based on business importance, rather than traditional device-type prioritization. By implementing a sophisticated damage assessment methodology, security teams don’t just prioritize via severity but instead, the inherent impact, damage, weakness and external exposure of an asset or user.

These calculations also revolutionize vulnerability management by combining industry standard CVE measurements with that organization-specific context to ensure patch management efforts are efficient, rather than an endless list.

Darktrace also integrates MITRE ATT&CK framework mappings to connect all risks through attack path modeling. This offers validation to our AI’s scoring by presenting real world incident scenarios that could occur across your technologies, and the actionable mitigations to mobilize against them.

For those human choke points, security may also deploy targeted phishing engagements. These send real but harmless email ‘attacks’ to test employee susceptibility, strengthening your ability to identify weak points in your security posture, while informing broader governance strategies.

Combining risk with live detection and response

Together, each of these capabilities let teams take the best steps towards reducing risk and the volume of incidents they face. However, getting proactive also sharpens your ability to handle live threats if they occur.  

During real incidents Darktrace users can quickly evaluate the potential impact of affected assets, create their own risk detections based on internal policies, strengthen their autonomous response along critical attack paths, or even see the possible stage of the next attack.

By continually ingesting risk information into live triage workflows, security teams will develop a proactive-first mindset, prioritizing the assets and alerts that have the most impact to the business. This lets them utilize their resource in the most efficient way, freeing up even more time for risk management, mitigation and ensuring continuity for the business.

Whether your organization is laying the foundation for a cybersecurity program or enhancing an advanced one, Darktrace’s self-learning AI adapts to your needs:

  • Foundational stage: For organizations establishing visibility and automating detection and response.
  • Integrated stage: For teams expanding coverage across domains and consolidating tools for simplicity.
  • Proactive stage: For mature security programs enhancing posture with vulnerability management and risk prioritization.

The Darktrace ActiveAI Security Platform empowers security teams to adopt a preventative defense strategy by using Cyber AI Analyst and autonomous response to fuel quicker triage, incident handling and give time back for proactive efforts designed around business impact. The platform encapsulates the critical capabilities that help organizations be proactive and stay ahead of evolving threats.

darktrace proactive exposure management solution brief reduce risk cyber risk

Download the solution brief

Maximize security visibility and reduce risk:

  • Unify risk exposure across all technologies with AI-driven scoring for CVEs, human communications, and architectures.
  • Gain cost and ROI insights on CVE risks, breach costs, patch latency, and blind spots.
  • Strengthen employee awareness with targeted phishing simulations and training.
  • Align proactive and reactive security by assessing device compromises and prevention strategies.
  • Reduce risk with tailored guidance that delivers maximum impact with minimal effort.

Take control of your security posture today. Download here!

References

[1] https://nvd.nist.gov/vuln/search, Search all, Statistics, Total matches By Year 2023 against 2024

[2] https://www.gartner.com/en/documents/5598859

[3] https://www.gartner.com/en/articles/how-to-manage-cybersecurity-threats-not-episodes

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness

More in this series

No items found.

Blog

/

Network

/

June 5, 2025

Unpacking ClickFix: Darktrace’s detection of a prolific social engineering tactic

Woman on laptop in office buildingDefault blog imageDefault blog image

What is ClickFix and how does it work?

Amid heightened security awareness, threat actors continue to seek stealthy methods to infiltrate target networks, often finding the human end user to be the most vulnerable and easily exploited entry point.

ClickFix baiting is an exploitation of the end user, making use of social engineering techniques masquerading as error messages or routine verification processes, that can result in malicious code execution.

Since March 2024, the simplicity of this technique has drawn attention from a range of threat actors, from individual cybercriminals to Advanced Persistent Threat (APT) groups such as APT28 and MuddyWater, linked to Russia and Iran respectively, introducing security threats on a broader scale [1]. ClickFix campaigns have been observed affecting organizations in across multiple industries, including healthcare, hospitality, automotive and government [2][3].

Actors carrying out these targeted attacks typically utilize similar techniques, tools and procedures (TTPs) to gain initial access. These include spear phishing attacks, drive-by compromises, or exploiting trust in familiar online platforms, such as GitHub, to deliver malicious payloads [2][3]. Often, a hidden link within an email or malvertisements on compromised legitimate websites redirect the end user to a malicious URL [4]. These take the form of ‘Fix It’ or fake CAPTCHA prompts [4].

From there, users are misled into believing they are completing a human verification step, registering a device, or fixing a non-existent issue such as a webpage display error. As a result, they are guided through a three-step process that ultimately enables the execution of malicious PowerShell commands:

  1. Open a Windows Run dialog box [press Windows Key + R]
  2. Automatically or manually copy and paste a malicious PowerShell command into the terminal [press CTRL+V]
  3. And run the prompt [press ‘Enter’] [2]

Once the malicious PowerShell command is executed, threat actors then establish command and control (C2) communication within the targeted environment before moving laterally through the network with the intent of obtaining and stealing sensitive data [4]. Malicious payloads associated with various malware families, such as XWorm, Lumma, and AsyncRAT, are often deployed [2][3].

Attack timeline of ClickFix cyber attack

Based on investigations conducted by Darktrace’s Threat Research team in early 2025, this blog highlights Darktrace’s capability to detect ClickFix baiting activity following initial access.

Darktrace’s coverage of a ClickFix attack chain

Darktrace identified multiple ClickFix attacks across customer environments in both Europe, the Middle East, and Africa (EMEA) and the United States. The following incident details a specific attack on a customer network that occurred on April 9, 2025.

Although the initial access phase of this specific attack occurred outside Darktrace’s visibility, other affected networks showed compromise beginning with phishing emails or fake CAPTCHA prompts that led users to execute malicious PowerShell commands.

Darktrace’s visibility into the compromise began when the threat actor initiated external communication with their C2 infrastructure, with Darktrace / NETWORK detecting the use of a new PowerShell user agent, indicating an attempt at remote code execution.

Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.
Figure 1: Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.

Download of Malicious Files for Lateral Movement

A few minutes later, the compromised device was observed downloading a numerically named file. Numeric files like this are often intentionally nondescript and associated with malware. In this case, the file name adhered to a specific pattern, matching the regular expression: /174(\d){7}/. Further investigation into the file revealed that it contained additional malicious code designed to further exploit remote services and gather device information.

Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.
Figure 2: Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.

The file contained a script that sent system information to a specified IP address using an HTTP POST request, which also processed the response. This process was verified through packet capture (PCAP) analysis conducted by the Darktrace Threat Research team.

By analyzing the body content of the HTTP GET request, it was observed that the command converts the current time to Unix epoch time format (i.e., 9 April 2025 13:26:40 GMT), resulting in an additional numeric file observed in the URI: /1744205200.

PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.
Figure 3: PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.

Across Darktrace’s investigations into other customers' affected by ClickFix campaigns, both internal information discovery events and further execution of malicious code were observed.

Data Exfiltration

By following the HTTP stream in the same PCAP, the Darktrace Threat Research Team assessed the activity as indicative of data exfiltration involving system and device information to the same command-and-control (C2) endpoint, , 193.36.38[.]237. This endpoint was flagged as malicious by multiple open-source intelligence (OSINT) vendors [5].

PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.
Figure 4: PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.

Further analysis of Darktrace’s Advanced Search logs showed that the attacker’s malicious code scanned for internal system information, which was then sent to a C2 server via an HTTP POST request, indicating data exfiltration

Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.
Figure 5: Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.

Actions on objectives

Around ten minutes after the initial C2 communications, the compromised device was observed connecting to an additional rare endpoint, 188.34.195[.]44. Further analysis of this endpoint confirmed its association with ClickFix campaigns, with several OSINT vendors linking it to previously reported attacks [6].

In the final HTTP POST request made by the device, Darktrace detected a file at the URI /init1234 in the connection logs to the malicious endpoint 188.34.195[.]44, likely depicting the successful completion of the attack’s objective, automated data egress to a ClickFix C2 server.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the compromised device and triggered an Enhanced Monitoring model alert, a high-priority detection model designed to identify activity indicative of the early stages of an attack. These models are monitored and triaged 24/7 by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection service, ensuring customers are promptly notified of malicious activity as soon as it emerges.

Darktrace correlated the separate malicious connections that pertained to a single campaign.
Figure 6: Darktrace correlated the separate malicious connections that pertained to a single campaign.

Darktrace Autonomous Response

In the incident outlined above, Darktrace was not configured in Autonomous Response mode. As a result, while actions to block specific connections were suggested, they had to be manually implemented by the customer’s security team. Due to the speed of the attack, this need for manual intervention allowed the threat to escalate without interruption.

However, in a different example, Autonomous Response was fully enabled, allowing Darktrace to immediately block connections to the malicious endpoint (138.199.156[.]22) just one second after the initial connection in which a numerically named file was downloaded [7].

Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.
Figure 7: Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.

This customer was also subscribed to our Managed Detection and Response service, Darktrace’s SOC extended a ‘Quarantine Device’ action that had already been autonomously applied in order to buy their security team additional time for remediation.

Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.
Figure 8: Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.

Conclusion

ClickFix baiting is a widely used tactic in which threat actors exploit human error to bypass security defenses. By tricking end point users into performing seemingly harmless, everyday actions, attackers gain initial access to systems where they can access and exfiltrate sensitive data.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace detects subtle deviations that may signal a compromise. In this case, Darktrace's Autonomous Response, when operating in a fully autonomous mode, was able to swiftly contain the threat before it could progress further along the attack lifecycle.

Credit to Keanna Grelicha (Cyber Analyst) and Jennifer Beckett (Cyber Analyst)

Appendices

NETWORK Models

  • Device / New PowerShell User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Device / Suspicious Domain
  • Device / New User Agent and New IP
  • Anomalous File / New User Agent Followed By Numeric File Download (Enhanced Monitoring Model)
  • Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

Autonomous Response Models

  • Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block
  • Antigena / Network::External Threat::Antigena File then New Outbound Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block
  • Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block

IoC - Type - Description + Confidence

·       141.193.213[.]11 – IP address – Possible C2 Infrastructure

·       141.193.213[.]10 – IP address – Possible C2 Infrastructure

·       64.94.84[.]217 – IP address – Possible C2 Infrastructure

·       138.199.156[.]22 – IP address – C2 server

·       94.181.229[.]250 – IP address – Possible C2 Infrastructure

·       216.245.184[.]181 – IP address – Possible C2 Infrastructure

·       212.237.217[.]182 – IP address – Possible C2 Infrastructure

·       168.119.96[.]41 – IP address – Possible C2 Infrastructure

·       193.36.38[.]237 – IP address – C2 server

·       188.34.195[.]44 – IP address – C2 server

·       205.196.186[.]70 – IP address – Possible C2 Infrastructure

·       rkuagqnmnypetvf[.]top – Hostname – C2 server

·       shorturl[.]at/UB6E6 – Hostname – Possible C2 Infrastructure

·       tlgrm-redirect[.]icu – Hostname – Possible C2 Infrastructure

·       diagnostics.medgenome[.]com – Hostname – Compromised Website

·       /1741714208 – URI – Possible malicious file

·       /1741718928 – URI – Possible malicious file

·       /1743871488 – URI – Possible malicious file

·       /1741200416 – URI – Possible malicious file

·       /1741356624 – URI – Possible malicious file

·       /ttt – URI – Possible malicious file

·       /1741965536 – URI – Possible malicious file

·       /1.txt – URI – Possible malicious file

·       /1744205184 – URI – Possible malicious file

·       /1744139920 – URI – Possible malicious file

·       /1744134352 – URI – Possible malicious file

·       /1744125600 – URI – Possible malicious file

·       /1[.]php?s=527 – URI – Possible malicious file

·       34ff2f72c191434ce5f20ebc1a7e823794ac69bba9df70721829d66e7196b044 – SHA-256 Hash – Possible malicious file

·       10a5eab3eef36e75bd3139fe3a3c760f54be33e3 – SHA-1 Hash – Possible malicious file

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Spearphishing Link - INITIAL ACCESS - T1566.002 - T1566

Drive-by Compromise - INITIAL ACCESS - T1189

PowerShell - EXECUTION - T1059.001 - T1059

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Automated Exfiltration - EXFILTRATION - T1020 - T1020.001

References

[1] https://www.logpoint.com/en/blog/emerging-threats/clickfix-another-deceptive-social-engineering-technique/

[2] https://www.proofpoint.com/us/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[3] https://cyberresilience.com/threatonomics/understanding-the-clickfix-attack/

[4] https://www.group-ib.com/blog/clickfix-the-social-engineering-technique-hackers-use-to-manipulate-victims/

[5] https://www.virustotal.com/gui/ip-address/193.36.38.237/detection

[6] https://www.virustotal.com/gui/ip-address/188.34.195.44/community

[7] https://www.virustotal.com/gui/ip-address/138.199.156.22/detection

Continue reading
About the author
Keanna Grelicha
Cyber Analyst

Blog

/

Proactive Security

/

June 4, 2025

Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Man on computer doing workDefault blog imageDefault blog image

Introducing Exploit Prediction Assessment

Security teams are drowning in vulnerability alerts, but only a fraction of those issues pose a real threat. The new Exploit Prediction Assessment feature in Darktrace / Attack Surface Management helps teams cut through the noise by validating which vulnerabilities on their external attack surface can be actively exploited.

Instead of relying solely on CVSS scores or waiting for patch cycles, Exploit Prediction Assessment uses safe, targeted simulations to test whether exposed systems can be compromised, delivering fast, evidence-based results in under 72 hours.

This capability augments traditional pen testing and complements existing ASM workflows by transforming passive discovery into actionable insight. With EPA, security teams move from reacting to long lists of potential vulnerabilities to making confident, risk-based decisions on what actually matters.

Key highlights of Exploit Prediction Assessment

Simulated attacks to validate real risk

Exploit Prediction Assessment conducts safe, simulated attacks on assets with potential security vulnerabilities that have been identified by Darktrace / Attack Surface Management. This real-time testing validates your systems' susceptibility to compromise by confirming which vulnerabilities are present and exploitable on your attack surface.

Prioritize what matters most

Confirmed security risks can be prioritized for mitigation, ensuring that the most critical threats are promptly addressed. This takes the existing letter ranking system and brings it a step further by drilling down to yet another level. Even in the most overwhelming situations, teams will be able to act on a pragmatic, clear-cut plan.

Fast results, tailored to your environment

Customers set the scope of the Exploit Prediction Assessment within Darktrace / Attack Surface Management and receive the results of the surgical vulnerability testing within 72 hours. Users will see 1 of 2 shields:

1. A green shield with a check mark: Meaning no vulnerabilities were found on scanned CVEs for the asset.

2. A red shield with a red x: Meaning at least one vulnerability was found on scanned CVEs for the asset.

Why it's a game changer

Traditionally, attack surface management tools have focused on identifying exposed assets and vulnerabilities but lacked the context to determine which issues posed the greatest risk. Without context on what’s exploitable, security teams are left triaging long lists of potential risks, operating in isolation from broader business objectives. This misalignment ultimately leads to both weakened risk posture and cross team communication and execution.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM is a framework that helps organizations continuously assess, validate, and improve their exposure to real-world threats. The goal isn’t just visibility, it’s to understand how an attacker could move through your environment today, and what to fix first to stop them.

Exploit Prediction Assessment brings this philosophy to life within Darktrace / Attack Surface Management. By safely simulating exploit attempts against identified vulnerabilities, it validates which exposures are truly at risk—transforming ASM from a discovery tool into a risk-based decision engine.

This capability directly supports the validation and prioritization phases of CTEM, helping teams focus on exploitable vulnerabilities rather than theoretical ones.  This shift from visibility to action reduces the risk of critical vulnerabilities in the technology stack being overlooked, turning overwhelming vulnerability data into focused, clear actionable insights.

As attack surfaces continue to grow and change, organizations need more than static scans they need continuous, contextual insight. Exploit Prediction Assessment ensures your ASM efforts evolve with the threat landscape, making CTEM a practical reality, not just a strategy.

Exploit Prediction Assessment in action

With Darktrace / Attack Surface Management organizations can get Exploit Prediction Assessment, and the cyber risk team no longer guesses which vulnerabilities matter most. Instead, they identify several externally exposed areas of their attack surface, then use the feature to surgically test for exploitability across these exposed endpoints. Within 72 hours, they receive a report:  

Positive outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it cannot be abused.

Negative outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it can be exploited, so we can predict it being exploited.

This second outcome changes everything. The team immediately prioritizes the exploitable asset for patching and takes the necessary adjustments to mitigate exposure until the fix is deployed.

Instead of spreading their resources thin across dozens of alerts, they focus on what poses a real threat, saving time, reducing risk, and demonstrating actionable results to stakeholders.

Conclusion

Exploit Predication Assessment bolsters Darktrace’s commitment to proactive cybersecurity. It supports intelligent prioritization of vulnerabilities, keeping organizations ahead of emerging threats. With this new addition to / Attack Surface Management, teams have another tool to empower a more efficient approach to addressing security gaps in real-time.

Stay tuned for more updates and insights on how Darktrace continues to develop a culture of proactive security across the entire ActiveAI Security Platform.

[related-resource]

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI