Blog
/
Proactive Security
/
February 22, 2023

Find High-Impact Attack Paths with Darktrace / Proactive Exposure Management

Understand high-impact attack paths with Darktrace / Proactive Exposure Management. Learn from detailed use cases and improve your cybersecurity measures effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Elliot Stocker
Product SME
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Feb 2023

What are the people, process, and technology assets that would do the most harm, if compromised by an attacker?

Attack path modeling provides a detailed map of all the roads that lead to an organization's crown jewels, prioritized in order of likelihood and potential impact. CISO's are increasingly looking to this kind of solution to complement their security stack because it highlights risks that are specific to this organization's structure, as well as potentially unexpected relationships between devices or users that would prove catastrophic if they were exploited.  

What makes Darktrace's Attack Path Modeling solution stand out?

  • Data sources are varied and information from the entire digital estate is considered
  • Modeling is real-time and continuously re-evaluated
  • Output does not require expert technical knowledge to be leveraged
  • Valuable as a standalone for vulnerability prioritization
  • As a component of the Darktrace ActiveAI Security Platform, the solution provides immediate value by feeding back into detection and response engines (e.g. tag critical assets for detection) but also provides long term systemic improvements as outcomes are followed up.

Thinking like an attacker

It is anticipated that CISOs will soon move beyond just insurance and checkbox compliance, as underwriters include more and more exclusions for certain types of cyber-attacks and the limits of compliance ticking the protection box rather than bolstering operational assurance become more apparent. They will push their teams to opt for more proactive cyber security measures to maximize ROI in the face of budget cuts, shifting investment into tools and capabilities that continuously improve their cyber resilience and demonstrate cyber risk reduction.

While red teams can provide insight into where effort and resource should be most immediately applied, the exercises themselves are often costly, non-exhaustive and infrequently run.

Hackers are constantly seeking pathways, preferably those of least resistance, to compromise a system by exploiting its vulnerabilities. Attack path modeling enables security teams to look at their environment from the perspective of the attacker. In turn, this helps them eliminate attack paths progressively, reducing the options an attacker would have, should they breach the walls.

A deeper dive into Attack Path Modeling

An attack path is a visual representation of the path that an attacker takes to exploit a weakness in the system. It highlights the series of steps (attack vectors) that a threat actor might take from one of the doors into the organization (attack surface) to access valuable assets.

It is typically unusual for an attacker to have a boulevard straight down to the crown jewels. They will most likely leverage a couple of loopholes, unexpected relationships and blind spots in the security stack to piece together a path to these confidential assets. Attack path modeling can help to highlight the attack vectors that connect, to form this path to compromise.  

Figure 1: The Darktrace / Proactive Exposure Management user interface.

How to model attack paths

Darktrace's proprietary Self-Learning AI models relationships, and graph theory is incorporated to understand the importance of users, documents and relationships between these.

Darktrace's Attack Path Modeling component identifies target nodes (users, accounts, devices), it then calculates the shortest paths to these target nodes and weights the results according to the likelihood of this attack path and the damage caused if the target asset was compromised. This is exactly what an attacker would do when planning an attack, albeit with a significant advantage to Darktrace's AI Engine, which has access to more information than the attacker. For the first time, defenders have the upper hand against attackers.

Avoiding siloed efforts

According to a Gartner survey, 75% of organizations are looking at consolidating security tools, not primarily because of cost, but because it helps drive cyber risk reduction. Ensuring that security efforts are part of a wider security ecosystem, rather than siloed efforts, is crucial to maximize the return on these investments.

Darktrace / Proactive Exposure Management integrates with Darktrace's detection and response to ensure that the organization's security posture is hardened, even if the team doesn't have time to eliminate the attack path.

Defensive superiority is key, and Attack Path Modeling is one way to help security teams gain back an advantage. Find out how you can test it in your own environment.

Attack Path Modeling is an objective, however, and there are a few important questions to consider when assessing the different methods of creating these models.

Are we considering all the relevant data when building my attack paths map?

Consider the case where one of your marketing executives has a close friendship with someone in your development team. How do you model that into your attack paths cartography? Attack paths encompass the full digital estate, so the attack path modeling solution should consider information from various parts, internal and external. This may include data from the Email environment, the Network, Endpoints, SaaS & Cloud, Active Directory, Vulnerability Scanners, etc.  

Cross-data analysis is the only way to understand holistic attack paths.

Are we looking at the most up to date map of attack paths?

Relationships between users, devices and other sensitive assets can evolve on a daily basis, this implies attack paths evolve on a daily basis. Ensuring that the methods or solutions used update their understanding continuously and in real-time is vital if security teams want the most up to date understanding of their organization's risk posture.

To improve our security posture, how do we know which attack paths to start with?

One thing is to map the sum-total of attack paths, another is to prioritize them. Attack path modeling gives you the map but adding a risk-assessment (explored in more depth below) layer on top is how you prioritize. This is where graph theory can be very useful to identify choke points that you may want to strengthen.  

Does this output yield actionable insights?

The prime objective of this solution is not simply to provide an assessment of cyber risk posture, but rather to help drive security efforts in the right direction. To that end, the output needs to be accessible to team members that may not have expert cyber skills. Lowering barriers to entry with usable insights and mitigation advice is key to successfully improve the organization's security posture.

Assessing risk to prioritize attack paths

Darktrace Attack Path Modeling (APM) is a risk-based approach to assessing cyber-attack pathways, thinking like an attacker, and probing the path of least resistance. 'Risk' in this case is defined as the product of two factors: Probability and Impact. By using this information to categorize possible attack paths in the risk matrix below, Darktrace's APM can prioritize attack paths to ensure security team efforts are spent on controlling for the most relevant risks for their organization.

Figure 2: Risk matrix for attack path prioritization

A: Defining Probability

There are two types of probability to consider:

The likelihood of one particular door being chosen by an attacker to infiltrate the organization (among the assets at the attack surface - this could be an internet-facing server, an inbox, a SaaS/Cloud account, etc). And,

The likelihood of one particular node (defined as a device or user account) being compromised next, via lateral movement.

Figure 3: Simplified example of calculating probability of lateral movement from a compromised agent to one of two servers

B: Defining Impact

Impact refers to the overall impact of an asset being compromised and unusable. In the case of an asset (e.g.: a key server), the bigger the disruption if this asset goes down, the higher the impact score. If considering a particular document, restricted access and sensitivity score of users accessing it are some of the variables used to estimate impact.

Figure 4: Diagram showing a simplified example of mapping access volume and sensitivity to estimate document value.

Both variables are calculated by the AI autonomously, without requiring human input. Security teams can of course reinforce the AI's understanding of the organization with their business expertise (by tagging additional sensitive devices for example).

A more in-depth description of how impact is propagated to identify key servers or sensitive documents, as well as other components that comprise the Darktrace Attack Path Modeling module can be found in this white paper.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Elliot Stocker
Product SME

More in this series

No items found.

Blog

/

Network

/

June 5, 2025

Unpacking ClickFix: Darktrace’s detection of a prolific social engineering tactic

Woman on laptop in office buildingDefault blog imageDefault blog image

What is ClickFix and how does it work?

Amid heightened security awareness, threat actors continue to seek stealthy methods to infiltrate target networks, often finding the human end user to be the most vulnerable and easily exploited entry point.

ClickFix baiting is an exploitation of the end user, making use of social engineering techniques masquerading as error messages or routine verification processes, that can result in malicious code execution.

Since March 2024, the simplicity of this technique has drawn attention from a range of threat actors, from individual cybercriminals to Advanced Persistent Threat (APT) groups such as APT28 and MuddyWater, linked to Russia and Iran respectively, introducing security threats on a broader scale [1]. ClickFix campaigns have been observed affecting organizations in across multiple industries, including healthcare, hospitality, automotive and government [2][3].

Actors carrying out these targeted attacks typically utilize similar techniques, tools and procedures (TTPs) to gain initial access. These include spear phishing attacks, drive-by compromises, or exploiting trust in familiar online platforms, such as GitHub, to deliver malicious payloads [2][3]. Often, a hidden link within an email or malvertisements on compromised legitimate websites redirect the end user to a malicious URL [4]. These take the form of ‘Fix It’ or fake CAPTCHA prompts [4].

From there, users are misled into believing they are completing a human verification step, registering a device, or fixing a non-existent issue such as a webpage display error. As a result, they are guided through a three-step process that ultimately enables the execution of malicious PowerShell commands:

  1. Open a Windows Run dialog box [press Windows Key + R]
  2. Automatically or manually copy and paste a malicious PowerShell command into the terminal [press CTRL+V]
  3. And run the prompt [press ‘Enter’] [2]

Once the malicious PowerShell command is executed, threat actors then establish command and control (C2) communication within the targeted environment before moving laterally through the network with the intent of obtaining and stealing sensitive data [4]. Malicious payloads associated with various malware families, such as XWorm, Lumma, and AsyncRAT, are often deployed [2][3].

Attack timeline of ClickFix cyber attack

Based on investigations conducted by Darktrace’s Threat Research team in early 2025, this blog highlights Darktrace’s capability to detect ClickFix baiting activity following initial access.

Darktrace’s coverage of a ClickFix attack chain

Darktrace identified multiple ClickFix attacks across customer environments in both Europe, the Middle East, and Africa (EMEA) and the United States. The following incident details a specific attack on a customer network that occurred on April 9, 2025.

Although the initial access phase of this specific attack occurred outside Darktrace’s visibility, other affected networks showed compromise beginning with phishing emails or fake CAPTCHA prompts that led users to execute malicious PowerShell commands.

Darktrace’s visibility into the compromise began when the threat actor initiated external communication with their C2 infrastructure, with Darktrace / NETWORK detecting the use of a new PowerShell user agent, indicating an attempt at remote code execution.

Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.
Figure 1: Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.

Download of Malicious Files for Lateral Movement

A few minutes later, the compromised device was observed downloading a numerically named file. Numeric files like this are often intentionally nondescript and associated with malware. In this case, the file name adhered to a specific pattern, matching the regular expression: /174(\d){7}/. Further investigation into the file revealed that it contained additional malicious code designed to further exploit remote services and gather device information.

Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.
Figure 2: Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.

The file contained a script that sent system information to a specified IP address using an HTTP POST request, which also processed the response. This process was verified through packet capture (PCAP) analysis conducted by the Darktrace Threat Research team.

By analyzing the body content of the HTTP GET request, it was observed that the command converts the current time to Unix epoch time format (i.e., 9 April 2025 13:26:40 GMT), resulting in an additional numeric file observed in the URI: /1744205200.

PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.
Figure 3: PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.

Across Darktrace’s investigations into other customers' affected by ClickFix campaigns, both internal information discovery events and further execution of malicious code were observed.

Data Exfiltration

By following the HTTP stream in the same PCAP, the Darktrace Threat Research Team assessed the activity as indicative of data exfiltration involving system and device information to the same command-and-control (C2) endpoint, , 193.36.38[.]237. This endpoint was flagged as malicious by multiple open-source intelligence (OSINT) vendors [5].

PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.
Figure 4: PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.

Further analysis of Darktrace’s Advanced Search logs showed that the attacker’s malicious code scanned for internal system information, which was then sent to a C2 server via an HTTP POST request, indicating data exfiltration

Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.
Figure 5: Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.

Actions on objectives

Around ten minutes after the initial C2 communications, the compromised device was observed connecting to an additional rare endpoint, 188.34.195[.]44. Further analysis of this endpoint confirmed its association with ClickFix campaigns, with several OSINT vendors linking it to previously reported attacks [6].

In the final HTTP POST request made by the device, Darktrace detected a file at the URI /init1234 in the connection logs to the malicious endpoint 188.34.195[.]44, likely depicting the successful completion of the attack’s objective, automated data egress to a ClickFix C2 server.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the compromised device and triggered an Enhanced Monitoring model alert, a high-priority detection model designed to identify activity indicative of the early stages of an attack. These models are monitored and triaged 24/7 by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection service, ensuring customers are promptly notified of malicious activity as soon as it emerges.

Darktrace correlated the separate malicious connections that pertained to a single campaign.
Figure 6: Darktrace correlated the separate malicious connections that pertained to a single campaign.

Darktrace Autonomous Response

In the incident outlined above, Darktrace was not configured in Autonomous Response mode. As a result, while actions to block specific connections were suggested, they had to be manually implemented by the customer’s security team. Due to the speed of the attack, this need for manual intervention allowed the threat to escalate without interruption.

However, in a different example, Autonomous Response was fully enabled, allowing Darktrace to immediately block connections to the malicious endpoint (138.199.156[.]22) just one second after the initial connection in which a numerically named file was downloaded [7].

Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.
Figure 7: Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.

This customer was also subscribed to our Managed Detection and Response service, Darktrace’s SOC extended a ‘Quarantine Device’ action that had already been autonomously applied in order to buy their security team additional time for remediation.

Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.
Figure 8: Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.

Conclusion

ClickFix baiting is a widely used tactic in which threat actors exploit human error to bypass security defenses. By tricking end point users into performing seemingly harmless, everyday actions, attackers gain initial access to systems where they can access and exfiltrate sensitive data.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace detects subtle deviations that may signal a compromise. In this case, Darktrace's Autonomous Response, when operating in a fully autonomous mode, was able to swiftly contain the threat before it could progress further along the attack lifecycle.

Credit to Keanna Grelicha (Cyber Analyst) and Jennifer Beckett (Cyber Analyst)

Appendices

NETWORK Models

  • Device / New PowerShell User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Device / Suspicious Domain
  • Device / New User Agent and New IP
  • Anomalous File / New User Agent Followed By Numeric File Download (Enhanced Monitoring Model)
  • Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

Autonomous Response Models

  • Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block
  • Antigena / Network::External Threat::Antigena File then New Outbound Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block
  • Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block

IoC - Type - Description + Confidence

·       141.193.213[.]11 – IP address – Possible C2 Infrastructure

·       141.193.213[.]10 – IP address – Possible C2 Infrastructure

·       64.94.84[.]217 – IP address – Possible C2 Infrastructure

·       138.199.156[.]22 – IP address – C2 server

·       94.181.229[.]250 – IP address – Possible C2 Infrastructure

·       216.245.184[.]181 – IP address – Possible C2 Infrastructure

·       212.237.217[.]182 – IP address – Possible C2 Infrastructure

·       168.119.96[.]41 – IP address – Possible C2 Infrastructure

·       193.36.38[.]237 – IP address – C2 server

·       188.34.195[.]44 – IP address – C2 server

·       205.196.186[.]70 – IP address – Possible C2 Infrastructure

·       rkuagqnmnypetvf[.]top – Hostname – C2 server

·       shorturl[.]at/UB6E6 – Hostname – Possible C2 Infrastructure

·       tlgrm-redirect[.]icu – Hostname – Possible C2 Infrastructure

·       diagnostics.medgenome[.]com – Hostname – Compromised Website

·       /1741714208 – URI – Possible malicious file

·       /1741718928 – URI – Possible malicious file

·       /1743871488 – URI – Possible malicious file

·       /1741200416 – URI – Possible malicious file

·       /1741356624 – URI – Possible malicious file

·       /ttt – URI – Possible malicious file

·       /1741965536 – URI – Possible malicious file

·       /1.txt – URI – Possible malicious file

·       /1744205184 – URI – Possible malicious file

·       /1744139920 – URI – Possible malicious file

·       /1744134352 – URI – Possible malicious file

·       /1744125600 – URI – Possible malicious file

·       /1[.]php?s=527 – URI – Possible malicious file

·       34ff2f72c191434ce5f20ebc1a7e823794ac69bba9df70721829d66e7196b044 – SHA-256 Hash – Possible malicious file

·       10a5eab3eef36e75bd3139fe3a3c760f54be33e3 – SHA-1 Hash – Possible malicious file

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Spearphishing Link - INITIAL ACCESS - T1566.002 - T1566

Drive-by Compromise - INITIAL ACCESS - T1189

PowerShell - EXECUTION - T1059.001 - T1059

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Automated Exfiltration - EXFILTRATION - T1020 - T1020.001

References

[1] https://www.logpoint.com/en/blog/emerging-threats/clickfix-another-deceptive-social-engineering-technique/

[2] https://www.proofpoint.com/us/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[3] https://cyberresilience.com/threatonomics/understanding-the-clickfix-attack/

[4] https://www.group-ib.com/blog/clickfix-the-social-engineering-technique-hackers-use-to-manipulate-victims/

[5] https://www.virustotal.com/gui/ip-address/193.36.38.237/detection

[6] https://www.virustotal.com/gui/ip-address/188.34.195.44/community

[7] https://www.virustotal.com/gui/ip-address/138.199.156.22/detection

Continue reading
About the author
Keanna Grelicha
Cyber Analyst

Blog

/

Proactive Security

/

June 4, 2025

Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Man on computer doing workDefault blog imageDefault blog image

Introducing Exploit Prediction Assessment

Security teams are drowning in vulnerability alerts, but only a fraction of those issues pose a real threat. The new Exploit Prediction Assessment feature in Darktrace / Attack Surface Management helps teams cut through the noise by validating which vulnerabilities on their external attack surface can be actively exploited.

Instead of relying solely on CVSS scores or waiting for patch cycles, Exploit Prediction Assessment uses safe, targeted simulations to test whether exposed systems can be compromised, delivering fast, evidence-based results in under 72 hours.

This capability augments traditional pen testing and complements existing ASM workflows by transforming passive discovery into actionable insight. With EPA, security teams move from reacting to long lists of potential vulnerabilities to making confident, risk-based decisions on what actually matters.

Key highlights of Exploit Prediction Assessment

Simulated attacks to validate real risk

Exploit Prediction Assessment conducts safe, simulated attacks on assets with potential security vulnerabilities that have been identified by Darktrace / Attack Surface Management. This real-time testing validates your systems' susceptibility to compromise by confirming which vulnerabilities are present and exploitable on your attack surface.

Prioritize what matters most

Confirmed security risks can be prioritized for mitigation, ensuring that the most critical threats are promptly addressed. This takes the existing letter ranking system and brings it a step further by drilling down to yet another level. Even in the most overwhelming situations, teams will be able to act on a pragmatic, clear-cut plan.

Fast results, tailored to your environment

Customers set the scope of the Exploit Prediction Assessment within Darktrace / Attack Surface Management and receive the results of the surgical vulnerability testing within 72 hours. Users will see 1 of 2 shields:

1. A green shield with a check mark: Meaning no vulnerabilities were found on scanned CVEs for the asset.

2. A red shield with a red x: Meaning at least one vulnerability was found on scanned CVEs for the asset.

Why it's a game changer

Traditionally, attack surface management tools have focused on identifying exposed assets and vulnerabilities but lacked the context to determine which issues posed the greatest risk. Without context on what’s exploitable, security teams are left triaging long lists of potential risks, operating in isolation from broader business objectives. This misalignment ultimately leads to both weakened risk posture and cross team communication and execution.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM is a framework that helps organizations continuously assess, validate, and improve their exposure to real-world threats. The goal isn’t just visibility, it’s to understand how an attacker could move through your environment today, and what to fix first to stop them.

Exploit Prediction Assessment brings this philosophy to life within Darktrace / Attack Surface Management. By safely simulating exploit attempts against identified vulnerabilities, it validates which exposures are truly at risk—transforming ASM from a discovery tool into a risk-based decision engine.

This capability directly supports the validation and prioritization phases of CTEM, helping teams focus on exploitable vulnerabilities rather than theoretical ones.  This shift from visibility to action reduces the risk of critical vulnerabilities in the technology stack being overlooked, turning overwhelming vulnerability data into focused, clear actionable insights.

As attack surfaces continue to grow and change, organizations need more than static scans they need continuous, contextual insight. Exploit Prediction Assessment ensures your ASM efforts evolve with the threat landscape, making CTEM a practical reality, not just a strategy.

Exploit Prediction Assessment in action

With Darktrace / Attack Surface Management organizations can get Exploit Prediction Assessment, and the cyber risk team no longer guesses which vulnerabilities matter most. Instead, they identify several externally exposed areas of their attack surface, then use the feature to surgically test for exploitability across these exposed endpoints. Within 72 hours, they receive a report:  

Positive outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it cannot be abused.

Negative outcome: Based on information in the html or the headers it seems that a vulnerable software version is running on an externally exposed infrastructure. By running a targeted attack on this infrastructure, we can confirm that it can be exploited, so we can predict it being exploited.

This second outcome changes everything. The team immediately prioritizes the exploitable asset for patching and takes the necessary adjustments to mitigate exposure until the fix is deployed.

Instead of spreading their resources thin across dozens of alerts, they focus on what poses a real threat, saving time, reducing risk, and demonstrating actionable results to stakeholders.

Conclusion

Exploit Predication Assessment bolsters Darktrace’s commitment to proactive cybersecurity. It supports intelligent prioritization of vulnerabilities, keeping organizations ahead of emerging threats. With this new addition to / Attack Surface Management, teams have another tool to empower a more efficient approach to addressing security gaps in real-time.

Stay tuned for more updates and insights on how Darktrace continues to develop a culture of proactive security across the entire ActiveAI Security Platform.

[related-resource]

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI