Internet of Things (IoT) Security: The Threat Before Us
The Internet of Things (Iot) offers many footholds for attackers to infiltrate organizations through smart devices. but self-learning AI is here to help.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Share
29
Sep 2021
Attackers are increasingly gaining footholds into corporate environments to conduct ransomware or data theft operations via Internet-connected smart devices. Whether they be printers, lockers, aquariums, or conference rooms, these seemingly innocuous access points to corporate environments can provide attackers the critical initial access to conduct their attacks. These can also often be blind spots for many security teams.
When dropped into an organization’s digital environment for the first time and learning its surroundings, Darktrace often finds 15–20% more devices than anticipated. Most of these unexpected devices and areas of unsecured vulnerability result from an influx in IoT-enabled tech. This growing dependence on IoT devices will only continue to accelerate. There are currently more than 10 billion active IoT devices. This number is estimated to surpass 25.4 billion in 2030, though, by Darktrace’s predictions, it will in fact be much higher. We assess that almost all estimates around IoT usage by 2025 are too low.
As a result of the COVID-19 pandemic and hybrid work, the future workplace environment will only become more hands-free and interconnected. Broad adoption of 5G will not only mean more IoT devices, but also expanded capabilities as they become more efficient and highly connected.
People can walk in with an Internet-connected device on their wrist, or a security problem can enter a company through a newly updated Internet-connected vending machine. IT teams do not always know these devices are “smart” or vet them like they would with standard company technology.
IoT device manufacturers do not have a record of prioritizing the security of their devices, often sacrificing it for access and convenience, placing the burden on company security teams after the fact. Starting with one of these IoT devices that are typically not reinforced with security protocols makes it easier for a hacker to move laterally. Much like the threat from supply chains, it is easier for a hacker to go through an open window than a locked, guarded front door.
IoT compromise frequently appears as a lead threat across Darktrace’s global SOC operations. We have seen IoT devices intentionally brought into a corporate environment and used by an insider because of their small size, low signature, and capabilities, making them a powerful tool to evade traditional security defenses focused on external and known threats. Darktrace has even discovered crypto-mining malware on a door sensor, showcasing how creative attackers can get and all the different ways unsecured IoT can be misused.
IoT security is critical to prevent hackers from moving laterally throughout a company network. If hackers can breach one device within an organization’s digital environment, they can move to more critical devices with more sensitive data.
The good news is that security teams aren’t without resources to defend their environments. The first thing corporations need to have is a policy around IoT usage and adoption. The next and often most challenging step is increasing visibility and understanding of these shadow devices the instant they connect to the network in the first place. To meet this mission, some security teams use AI to identify the device and map ‘normal’ behaviors, then enforce a device’s behavior to disrupt any attacker’s efforts to use that device as an attack platform. Leveraging AI in this way also reduces the workload on already taxed security teams.
From a broader policy perspective, in tandem with internal security efforts, more pressure needs to be put on IoT manufacturers to make security a priority and part of the entire development and upgrade process. Disrupting attacks and hardening environments from attacker access points and attack vectors is everyone’s responsibility.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Why Data Classification Isn’t Enough to Prevent Data Loss
Why today’s data is fundamentally difficult to protect
Data isn’t what it used to be. It’s no longer confined to neat rows in a database, or tucked away in a secure on-prem server. Today, sensitive information moves freely between cloud platforms, SaaS applications, endpoints, and a globally distributed workforce – often in real time. The sheer volume and diversity of modern data make it inherently harder to monitor, classify, and secure. And the numbers reflect this challenge – 63% of breaches stem from malicious insiders or human error.
This complexity is compounded by an outdated reliance on manual data management. While data classification remains critical – particularly to ensure compliance with regulations like GDPR or HIPAA – the burden of managing this data often falls on overstretched security teams. Security teams are expected to identify, label, and track data across sprawling ecosystems, which can be time-consuming and error-prone. Even with automation, rigid policies that depend on pre-defined data classification miss the mark.
From a data protection perspective, if manual or basic automated classification is the sole methodology for preventing data loss, critical data will likely slip through the cracks. Security teams are left scrambling to fill the gaps, facing compliance risks and increasing operational overhead. Over time, the hidden costs of these inefficiencies pile up, draining resources and reducing the effectiveness of your entire security posture.
What traditional data classification can’t cover
Data classification plays an important role in data loss prevention, but it's only half the puzzle. It’s designed to spot known patterns and apply labels, yet the most common causes of data breaches don’t follow rules. They stem from something far harder to define: human behavior.
Data classification is blind to nuance – it can’t grasp intent, context, or the subtle red flags that often precede a breach. And no amount of labeling, policy, or training can fully account for the reality that humans make mistakes. These problems require a system that sees beyond the data itself — one that understands how it’s being used, by whom, and in what context. That’s why Darktrace leans into its core strength: detecting the subtle symptoms of data loss by interpreting human behavior, not just file labels.
Achieving autonomous data protection with behavioral AI
Its understanding of business operations allows it to detect subtle anomalies around data movement for your use cases, whether that’s a misdirected email, an insecure cloud storage link, or suspicious activity from an insider. Crucially, this detection is entirely autonomous, with no need for predefined rules or static labels.
Fig 1: Darktrace uses its contextual understanding of each user to stop all types of sensitive or misdirected data from leaving the organization
Darktrace / EMAIL’s DLP add-on continuously learns in real time, enabling:
Automatic detection: Identifies risky data behavior to catch threats that traditional approaches miss – from human error to sophisticated insider threats.
A dynamic range of actions: Darktrace always aims to avoid business disruption in its blocking actions, but this can be adjusted according to the unique risk appetite of each customer – taking the most appropriate response for that business from a whole scale of possibilities.
Enhanced context: While Darktrace doesn’t require sensitivity data labeling, it integrates with Microsoft Purview to ingest sensitivity labels and enrich its understanding of the data – for even more accurate decision-making.
Beyond preventing data loss, Darktrace uses DLP activity to enhance its contextual understanding of the user itself. In other words, outbound activity can be a useful symptom in identifying a potential account compromise, or can be used to give context to that user’s inbound activity. Because Darktrace sees the whole picture of a user across their inbound, outbound, and lateral mail, as well as messaging (and into collaboration tools with Darktrace / IDENTITY), every interaction informs its continuous learning of normal.
With Darktrace, you can achieve dynamic data loss prevention for the most challenging human-related use cases – from accidental misdirected recipients to malicious insiders – that evade detection from manual classification. So don’t stand still on data protection – make the switch to autonomous, adaptive DLP that understands your business, data, and people.
Email bombing exposed: Darktrace’s email defense in action
What is email bombing?
An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.
How does email bombing work?
Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.
In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].
In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.
The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.
Email bombing attack overview
In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.
Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.
Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.
The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).
Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.
Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.
Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.
The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.
Conclusion
Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.
Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.
Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)