Blog
/
Cloud
/
August 22, 2024

From the Depths: Analyzing the Cthulhu Stealer Malware for macOS

Cado Security (now part of Darktrace) analyzed "Cthulhu Stealer," a macOS malware-as-a-service written in Go. It impersonates legitimate software, prompts for user and MetaMask passwords, and steals credentials, cryptocurrency wallets, and game accounts. Functionally similar to Atomic Stealer, Cthulhu was rented via an underground marketplace, but its operators faced complaints and a ban for alleged exit scamming.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Aug 2024

Introduction

For years there has been a general belief that macOS systems are immune to malware. While MacOS has a reputation for being secure, macOS malware has been trending up in recent years with the emergence of Silver Sparrow [1],  KeRanger [2], and Atomic Stealer [3], among others. Recently, Cado Security has identified a malware-as-a-service (MaaS) targeting macOS users named “Cthulhu Stealer”. This blog will explore the functionality of this malware and provide insight into how its operators carry out their activities.

Technical analysis

File details:

Language: Go

Not signed

Stripped

Multiarch: x86_64 and arm

Screenshot
Figure 1: Screenshot of disk image when mounted

Cthulhu Stealer is an Apple disk image (DMG) that is bundled with two binaries, depending on the architecture. The malware is written in GoLang and disguises itself as legitimate software. Once the user mounts the dmg, the user is prompted to open the software. After opening the file, “osascript”, the macOS command-line tool for running AppleScript and JavaScript is used to prompt the user for their password. 

Password Prompt
Figure 2: Password Prompt 
Osascript
Figure 3: Osascript prompting user for password

Once the user enters their password, a second prompt requests the user’s MetaMask [4] password. A directory is created in ‘/Users/Shared/NW’ with the credentials stored in textfiles. Chainbreak [5] is used to dump Keychain passwords and stores the details in “Keychain.txt”.

Wallet Connect Password prompt
Figure 4: Password prompt for MetaMask
Directory
Figure 5: Directory /Users/Shared/NW with created files

A zip file containing the stolen data is created in: “/Users/Shared/NW/[CountryCode]Cthulhu_Mac_OS_[date]_[time].zip.” Additionally, a notification is sent to the C2, to alert to new logs. The malware fingerprints the victim’s system, gathering information including IP, with IP details that are retrieved from ipinfo.io.  

System information including system name, OS version, hardware and software information is also gathered and stored in a text file.

Parsed IP Details
Figure 6: Parsed IP Details 
Cthulhu Stealer
Figure 7: Contents of ‘Userinfo.txt’
Code
Figure 8: Part of the function saving system information to text file
Log Alert
Figure 9: Alert of Log that is sent to operators

Cthulhu Stealer impersonates disk images of legitimate software that include:

  • CleanMyMac
  • Grand Theft Auto IV (appears to be a typo for VI)
  • Adobe GenP

The main functionality of Cthulhu Stealer is to steal credentials and cryptocurrency wallets from various stores, including game accounts. Shown in Figure 10, there are multiple checker functions that check in the installation folders of targeted file stores, typically in “Library/Application Support/[file store]”. A directory is created in “/Users/Shared/NW” and the contents of the installation folder are dumped into text files for each store.

Code
Figure 10: “Checker” functions being called in main function
Code
Figure 11: Function BattleNetChecker

A list of stores Cthulhu Stealer steals from is shown in the list below:

  • Browser Cookies
  • Coinbase Wallet
  • Chrome Extension Wallets
  • Telegram Tdata account information
  • Minecraft user information
  • Wasabi Wallet
  • MetaMask Wallet
  • Keychain Passwords
  • SafeStorage Passwords
  • Battlenet game, cache and log data
  • Firefox Cookies
  • Daedalus Wallet
  • Electrum Wallet
  • Atomic Wallet
  • Binanace Wallet
  • Harmony Wallet
  • Electrum Wallet
  • Enjin Wallet
  • Hoo Wallet
  • Dapper Wallet
  • Coinomi Wallet
  • Trust Wallet

Comparison to atomic stealer

Atomic Stealer [6] is an information-stealer that targets macOS written in Go that was first identified in 2023. Atomic Stealer steals crypto wallets, browser credentials, and keychain. The stealer is sold on Telegram to affiliates for $1,000 per month. The functionality and features of Cthulhu Stealer are very similar to Atomic Stealer, indicating the developer of Cthulhu Stealer probably took Atomic Stealer and modified the code. The use of “osascript”  to prompt the user for their password is similar in Atomic Stealer and Cthulhu, even including the same spelling mistakes. 

Forum and operators

The developers and affiliates of Cthulhu Stealer operate as “Cthulhu Team” using Telegram for communications. The stealer appears to be being rented out to individuals for $500 USD/month, with the main developer paying out a percentage of earnings to affiliates based on their deployment. Each affiliate of the stealer is responsible for the deployment of the malware. Cado has found Cthulhu Stealer sold on two well-known malware marketplaces which are used for communication, arbitration and advertising of the stealer, along with Telegram. The user “Cthulhu” (also known as Balaclavv), first started advertising Cthulhu Stealer at the end of 2023 and appeared to be operating for the first few months of 2024, based on timestamps from the binaries. 

Various affiliates of the stealer started lodging complaints against Cthulhu in 2024 with regards to payments not being received. Users complained that Cthulhu had stolen money that was owed to them and accused the threat actor of being a scammer or participating in an exit scam. As a result, the threat actor received a permanent ban from the marketplace.

Screenshot
Figure 12: Screenshot of an arbitration an affiliate lodged against Cthulhu

Key takeaways 

In conclusion, while macOS has long been considered a secure system, the existence of malware targeting Mac users remains an increasing security concern. Although Cthulhu Team no longer appears to be active, this serves as a reminder that Apple users are not immune to cyber threats. It’s crucial to remain vigilant and exercise caution, particularly when installing software from unofficial sources.

To protect yourself from potential threats, always download software from trusted sources, such as the Apple App Store or the official websites of reputable developers. Enable macOS’s built-in security features such as Gatekeeper, which helps prevent the installation of unverified apps. Keep your system and applications up to date with the latest security patches. Additionally, consider using reputable antivirus software to provide an extra layer of protection.

By staying informed and taking proactive steps, you can significantly reduce the risk of falling victim to Mac malware and ensure your system remains secure.

Indicators of compromise

Launch.dmg  

6483094f7784c424891644a85d5535688c8969666e16a194d397dc66779b0b12  

GTAIV_EarlyAccess_MACOS_Release.dmg  

e3f1e91de8af95cd56ec95737669c3512f90cecbc6696579ae2be349e30327a7  

AdobeGenP.dmg  

f79b7cbc653696af0dbd867c0a5d47698bcfc05f63b665ad48018d2610b7e97b  

Setup2024.dmg  

de33b7fb6f3d77101f81822c58540c87bd7323896913130268b9ce24f8c61e24  

CleanMyMac.dmg  

96f80fef3323e5bc0ce067cd7a93b9739174e29f786b09357125550a033b0288  

Network indicators  

89[.]208.103.185  

89[.]208.103.185:4000/autocheckbytes  

89[.]208.103.185:4000/notification_archive  

MITRE ATTACK  

User Execution  

T1204  

Command and Scripting Interpreter: Apple Script  

T1059.002  

Credentials From Password Stores  

T1555  

Credentials From Password Stores: Keychain  

T1555.001  

Credentials From Password Stores: Credentials From Web Browser  

T1555.003  

Account Discovery   

T1087  

System Information Discovery  

T1082  

Data Staged  

T1074  

Data From Local System  

T1005  

Exfiltration Over C2 Channel  

T1041  

Financial Theft  

Detection

Yara

rule MacoOS_CthulhuStealer {   
meta:       
 Description = "Detects Cthulhu MacOS Stealer Binary"       
 author = "Cado Security"       
 date = "14/08/2024"       
 md5 = "897384f9a792674b969388891653bb58" strings:           
 $mach_o_x86_64 = {CF FA ED FE 07 00 00 01 00 00 00 00 00 00 00 00}           
 $mach_o_arm64 = {CF FA ED FE 0C 00 00 01 00 00 00 00 00 00 00 00}          $c2 = "http://89.208.103.185:4000"           
 $path1 = "/Users/Shared/NW" fullword          $path2 = "/Users/admin/Desktop/adwans/Builder/6987368329/generated_script.go" fullword          $path3 = "ic.png" fullword           
 $zip = "@====)>>>>>>>>> CTHULHU STEALER - BOT <<<<<<<<<(====@\n" fullword          $func1 = "copyKeychainFile"           
 $func2 = "grabberA1"           
 $func3 = "grabberA2"          
 $func4 = "decodeIPInfo"           
 $func5 = "battlenetChecker"           
 $func6 = "binanceChecker"          
 $func7 = "daedalusChecker"           
 $func8 = "CCopyFFolderContents"           
 $func9 = "electrumChecker"         
 
condition:         
 $mach_o_x86_64 or $mach_o_arm64           
 and any of ($func*) or any of ($path*) or ($c2) or ($zip) } 

References

[1] https://redcanary.com/blog/threat-intelligence/clipping-silver-sparrows-wings/

[2] https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/

[3] https://www.sentinelone.com/blog/atomic-stealer-threat-actor-spawns-second-variant-of-macos-malware-sold-on-telegram/

[4] https://metamask.io/

[5] https://github.com/n0fate/chainbreaker

[6] https://www.sentinelone.com/blog/atomic-stealer-threat-actor-spawns-second-variant-of-macos-malware-sold-on-telegram/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

/

October 20, 2025

Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion

salt typhoonDefault blog imageDefault blog image

What is Salt Typhoon?

Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.

Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].

Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.

Darktrace’s coverage

In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.

Initial access

The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.

Tooling

Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.

Command-and-Control (C2)

The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].

Detection timeline

Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.

Cyber AI Analyst observations

Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.

Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.

Conclusion

Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

IoC-Type-Description + Confidence

89.31.121[.]101 – IP Address – Possible C2 server

hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download

b5367820cd32640a2d5e4c3a3c1ceedbbb715be2 - SHA1 – Likely SNAPPYBEE download

hxxp://89.31.121[.]101:443/NortonLog.txt - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/123.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/123.tar - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/pdc.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443//Dialog.dat - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/fltLib.dll - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DisplayDialog.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DgApi.dll - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/dbindex.dat - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/1.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbDll.dll – Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbSvc.exe - URI – Likely DLL side-loading activity

aar.gandhibludtric[.]com – Hostname – Likely C2 server

38.54.63[.]75 – IP – Likely C2 server

156.244.28[.]153 – IP – Possible C2 server

hxxp://156.244.28[.]153/17ABE7F017ABE7F0 - URI – Possible C2 activity

MITRE TTPs

Technique | Description

T1190 | Exploit Public-Facing Application - Citrix NetScaler Gateway compromise

T1105 | Ingress Tool Transfer – Delivery of backdoor to internal hosts

T1665 | Hide Infrastructure – Use of SoftEther VPN for C2

T1574.001 | Hijack Execution Flow: DLL – Execution of backdoor through DLL side-loading

T1095 | Non-Application Layer Protocol – Unidentified application-layer protocol for C2 traffic

T1071.001| Web Protocols – HTTP-based C2 traffic

T1571| Non-Standard Port – Port 443 for unencrypted HTTP traffic

Darktrace Model Alerts during intrusion

Anomalous File::Internal::Script from Rare Internal Location

Anomalous File::EXE from Rare External Location

Anomalous File::Multiple EXE from Rare External Locations

Anomalous Connection::Possible Callback URL

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

Antigena::Network::Significant Anomaly::Antigena Controlled and Model Alert

Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena::Network::External Threat::Antigena File then New Outbound Block  

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-239a

[2] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[3] https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/k/earth-estries/IOC_list-EarthEstries.txt

[4] https://www.trendmicro.com/en_gb/research/24/k/breaking-down-earth-estries-persistent-ttps-in-prolonged-cyber-o.html

[5] https://lab52.io/blog/deedrat-backdoor-enhanced-by-chinese-apts-with-advanced-capabilities/

[6] https://www.silentpush.com/blog/salt-typhoon-2025/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

AI

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI