Blog
/
AI
/
April 16, 2025

Force Multiply Your Security Team with Agentic AI: How the Industry’s Only True Cyber AI Analyst™ Saves Time and Stop Threats

See how Darktrace Cyber AI Analyst™, an agentic AI virtual analyst, cuts through alert noise, accelerates threat response, and strengthens your security team — all without adding headcount.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products
Team collaborating in work spaceDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

With 90million investigations in 2024 alone, Darktrace Cyber AI Analyst TM is transforming security operations with AI and has added up to 30 Full Time Security Analysts to almost 10,000 security teams.

In today’s high-stakes threat landscape, security teams are overwhelmed — stretched thin by burnout, alert fatigue, and a constant barrage of fast-moving attacks. As traditional tools can’t keep up, many are turning to AI to solve these challenges. But not all AI is created equal, and no single type of AI can perform all the functions necessary to effectively streamline security operations, safeguard your organization and rapidly respond to threats.

Thus, a multi-layered AI approach is critical to enhance threat detection, investigation, and response and augment security teams. By leveraging multiple AI methods, such as machine learning, deep learning, and natural language processing, security systems become more adaptive and resilient, capable of identifying and mitigating complex cyber threats in real time. This comprehensive approach ensures that no single AI method's limitations compromise the overall security posture, providing a robust defense against evolving threats.

As leaders in AI in cybersecurity, Darktrace has been utilizing a multi-layered AI approach for years, strategically combining and layering a range of AI techniques to provide better security outcomes. One key component of this is our Cyber AI Analyst – a sophisticated agentic AI system that avoids the pitfalls of generative AI. This approach ensures expeditious and scalable investigation and analysis, accurate threat detection and rapid automated response, empowering security teams to stay ahead of today's sophisticated cyber threats.

In this blog we will explore:

  • What agentic AI is and why security teams are adopting it to deliver a set of critical functions needed in cybersecurity
  • How Darktrace’s Cyber AI AnalystTM is a sophisticated agentic AI system that uses a multi-layered AI approach to achieve better security outcomes and enhance SOC analysts
  • Introduce two new innovative machine learning models that further augment Cyber AI Analyst’s investigation and evaluation capabilities

The rise of agentic AI

To combat the overwhelming volume of alerts, the shortage of security professionals, and burnout, security teams need AI that can perform complex tasks without human intervention, also known as agentic AI. The ability of these systems to act autonomously can significantly improve efficiency and effectiveness. However, many attempts to implement agentic AI rely on generative AI, which has notable drawbacks.

Broadly speaking, agentic AI refers to artificial intelligence systems that act autonomously as "agents," capable of carrying out complex tasks, making decisions, and interacting with tools or external systems with no or limited human intervention. Unlike traditional AI models that perform predefined tasks, it uses advanced techniques to mimic human decision-making processes, dynamically adapting to new challenges and responding to varied inputs. In a narrower definition, agentic AI often uses generative large language models (LLMs) as its core, using this to plan tasks and interactions with other systems, iteratively feeding its output into its input to accomplish more tasks than are traditionally possible with a single prompt. When described in terms of technology rather than functionality, agentic AI would be deemed as AI using this kind of generative system.

In cybersecurity, agentic AI systems can be used to autonomously monitor traffic, identify unusual patterns or anomalies indicating potential threats, and take action to respond to these possible attacks. For example, they can handle incident response tasks such as isolating affected systems or patching vulnerabilities, and triaging alerts. This reduces the reliance on human analysts for routine tasks, allowing them to focus on high-priority incidents and strategic initiatives, thereby increasing the overall efficiency and effectiveness of the SOC.

Despite their potential, agentic AI systems with a generative AI core have notable limitations. Whether based on widely used foundation models or fully custom proprietary implementations, generative AI often struggles with poor reasoning and can produce incorrect conclusions. These models are prone to "hallucinations," where they generate false information, which can be magnified through iterative processes. Additionally, generative AI systems are particularly susceptible to inheriting biases from training data, leading to incorrect outcomes, and are vulnerable to adversarial attacks, such as prompt injection that manipulates the AI's decision-making process.

Thus, choosing the right agentic AI system is crucial for security teams to ensure accurate threat detection, streamline investigations, and minimize false positives. It's essential to look beyond generative AI-based systems, which can lead to false positives and missed threats, and adopt AI that integrates multiple techniques. By considering AI systems that leverage a variety of advanced methods, organizations can build a more robust and comprehensive security strategy.  

Industry’s most experienced agentic AI analyst

First introduced in 2019, Darktrace Cyber AI AnalystTM emerged as a groundbreaking, patented solution in the cybersecurity landscape. As the most experienced AI Analyst deployed to almost 10,000 customers worldwide, Cyber AI Analyst is a sophisticated example of agentic AI, aligning closely with our broad definition. Unlike generative AI-based systems, it uses a multi-layered AI approach - strategically combining and layering various AI techniques, both in parallel and sequentially – to autonomously investigate and triage alerts with speed and precision that outpaces human teams. By utilizing a diverse set of AI methods, including unsupervised machine learning, models trained on expert cyber analysts, and custom security-specific large language models, Cyber AI Analyst mirrors human investigative processes by questioning data, testing hypotheses, and reaching conclusions at machine speed and scale. It integrates data from various sources – including network, cloud, email, OT and even third-party alerts – to identify threats and execute appropriate responses without human input, ensuring accurate and reliable decision-making.

With its ability to learn and adapt using Darktrace's unique understanding of an organization’s environment, Cyber AI Analyst highlights anomalies and passes only the most relevant activity to human users. Every investigation is thoroughly explained with natural language summaries, providing transparent and interpretable AI insights. Unlike generative AI-based agentic systems, Cyber AI Analyst's outputs are based on a comprehensive understanding of the underlying data, avoiding inaccuracies and "hallucinations," thereby dramatically reducing risk of false positives.

90 million investigations. Zero burnout.

Building on six years of innovation since launch, Darktrace's Cyber AI Analyst continues to revolutionize security operations by automating time-consuming tasks and enabling teams to focus on strategic initiatives. In 2024 alone, the sophisticated AI system autonomously conducted 90 million investigations, its analysis and correlation during these investigations resulted in escalating just 3 million incidents for human validation and resulting in fewer than 500,000 incidents deemed critical to the security of the organization. This completely changed the security operations process, providing customers with an ability to investigate every relevant alert as an unprecedented alternative to detection engineering that avoids massive quantities of risk from the traditional approach.  Cyber AI Analyst performed the equivalent of 42 million hours of human investigation for relevant security alerts.

The benefits of Cyber AI Analyst will transform security operations as we know it today:

  • Autonomously investigates thousands of alerts, distilling them into a few critical incidents — saving security teams thousands of hours and removing risk from current “triage few” processes. [See how the State of Oklahoma gained 2,561 hours of investigation time and eliminated 3,142 alerts in 3 months]
  • It decreases critical incident discoverability from hours to minutes, enabling security teams to respond faster to potential threats that will severely impact their organization. Learn how South Coast Water District went from hours to minutes in incident discovery.
  • It reduces false positives by 90%, giving security teams confidence in its accuracy and output.
  • Delivers the output of up to 30 full-time analysts – without the cost, burnout, or ramp-up time, while elevating existing human security analysts to validation and response

Cyber AI Analyst allows security teams to allocate their resources more effectively, focusing on genuine threats rather than sifting through noise. This not only enhances productivity but also ensures that critical alerts are addressed promptly, minimizing potential damage and improving overall cyber resilience.

Always innovating - Next-generation AI models for cybersecurity

As empowering defenders with AI has never been more critical, Darktrace remains committed to driving innovation that helps our customers proactively reduce risk, strengthen their security posture, and uplift their teams. To further enhance security teams, Darktrace is introducing two next-generation AI models for cybersecurity within Cyber AI Analyst, including:

  • Darktrace Incident Graph Evaluation for Security Threats (DIGEST): Using graph neural networks, this model analyzes how attacks progress to predict which threats are likely to escalate — giving your team earlier warnings and sharper prioritization.  This means earlier warnings, better prioritization, and fewer surprises during active threats.
  • Darktrace Embedding Model for Investigation of Security Threats - Version 2 (DEMIST-2): This new language model is purpose-built for cybersecurity. With deep contextual understanding, it automates critical human-like analysis— like assessing hostnames, file sensitivity, and tracking users across environments. Unlike large general-purpose models, it delivers superior performance with a smaller footprint. Working across all our deployment types, including on-prem and cloud, it can run without internet access, keeping inference local.

Unlike the foundational LLMs that power many generative and agentic systems, these models are purpose-built for cybersecurity, supported by insights of over 200 security analysts and is capable of mimicking how an analyst thinks, to bring AI-based precision and depth of analysis into the SOC. By understanding how attacks evolve and predicting which threats are most likely to escalate, these machine learning models enable Cyber AI AnalystTM to provide earlier detection, sharper prioritization, and faster, more confident decision-making.

Conclusion

Darktrace Cyber AI AnalystTM redefines security operations with proven agentic AI — delivering autonomous investigations and faster response times, while significantly reducing false positives. With powerful new models like DIGEST and DEMIST-2, it empowers security teams to prioritize what matters, cut through noise, and stay ahead of evolving threats — all without additional headcount. As cyber risk grows, Cyber AI Analyst stands out as a force multiplier, driving efficiency, resilience, and confidence in every SOC.

[related-resource]

Additional resources

Learn more about Cyber AI Analyst

Explore the solution brief, learn how Cyber AI Analyst combines advanced AI techniques to deliver faster, more effective security outcomes

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI