Blog
/
Email
/
February 24, 2025

Detecting and Containing Account Takeover with Darktrace

Account takeovers are rising with SaaS adoption. Learn how Darktrace detects deviations in user behavior and autonomously stops threats before they escalate.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Min Kim
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Feb 2025

Thanks to its accessibility from anywhere with an internet connection and a web browser, Software-as-a-Service (SaaS) platforms have become nearly universal across organizations worldwide. However, with this growing popularity comes greater responsibility. Increased attention attracts a larger audience, including those who may seek to exploit these widely used services. One crucial factor to be vigilant about in the SaaS landscape is safeguarding internal credentials. Minimal protection on accounts can lead to SaaS hijacking, which could allow further escalations within the network.

How does SaaS account takeover work?

SaaS hijacking occurs when a malicious actor takes control of a user’s active session with a SaaS application. Attackers can achieve this through various methods, including employees using company credentials on compromised or spoofed external websites, brute-force attacks, social engineering, and exploiting outdated software or applications.

After the hijack, attackers may escalate their actions by changing email rules and using internal addresses for additional social engineering attacks. The larger goal of these actions is often to steal internal data, damage reputations, and disrupt operations.

Account takeover protection

It has become essential to have security tools capable of outsmarting potential malicious actors. Traditional tools that rely on rules and signatures may not be able to identify new events, such as logins or activities from a rare endpoint, unless they come from a known malicious source.

Darktrace relies on analysis of user and network behavior, tailored to each customer, allowing it to identify anomalous events that the user typically does not engage in. In this way, unusual SaaS activities can be detected, and unwanted actions can be halted to allow time for remediation before further escalations.

The following cases, drawn from the global customer base, illustrate how Darktrace detects potential SaaS hijack attempts and further escalations, and applies appropriate actions when necessary.

Case 1: Unusual login after a phishing email

A customer in the US received a suspicious email that seemed to be from the legitimate file storage service, Dropbox. However, Darktrace identified that the reply-to email address, hremployeepyaroll@mail[.]com, was masquerading as one associated with the customer’s Human Resources (HR) department.

Further inspection of this sender address revealed that the attacker had intentionally misspelled ‘payroll’ to trick recipients into believing it was legitimate

Furthermore, the subject of the email indicated that the attackers were attempting a social engineering attack by sharing a file related to pay raises and benefits to capture the recipients' attention and increase the likelihood of their targets engaging with the email and its attachment.

Figure 1: Subject of the phishing email.
Figure 1: Subject of the phishing email.

Unknowingly, the recipient, who believed the email to be a legitimate HR communication, acted on it, allowing malicious attackers to gain access to the account. Following this, the recipient’s account was observed logging in from a rare location using multi-factor authentication (MFA) while also being active from another more commonly observed location, indicating that the SaaS account had been compromised.

Darktrace’s Autonomous Response action triggered by an anomalous email received by an internal user, followed by a failed login attempt from a rare external source.
Figure 2: Darktrace’s Autonomous Response action triggered by an anomalous email received by an internal user, followed by a failed login attempt from a rare external source.

Darktrace subsequently observed the SaaS actor creating new inbox rules on the account. These rules were intended to mark as read and move any emails mentioning the file storage company, whether in the subject or body, to the ‘Conversation History’ folder. This was likely an attempt by the threat actor to hide any outgoing phishing emails or related correspondence from the legitimate account user, as the ‘Conversation History’ folder typically goes unread by most users.

Typically, Darktrace / EMAIL would have instantly placed the phishing email in the junk folder before they reached user’s inbox, while also locking the links identified in the suspicious email, preventing them from being accessed. Due to specific configurations within the customer’s deployment, this did not happen, and the email remained accessible to the user.

Case 2: Login using unusual credentials followed by password change

In the latter half of 2024, Darktrace detected an unusual use of credentials when a SaaS actor attempted to sign into a customer’s Microsoft 365 application from an unfamiliar IP address in the US. Darktrace recognized that since the customer was located within the Europe, Middle East, and Africa (EMEA) region, a login from the US was unexpected and suspicious. Around the same time, the legitimate account owner logged into the customer’s SaaS environment from another location – this time from a South African IP, which was commonly seen within the environment and used by other internal SaaS accounts.

Darktrace understood that this activity was highly suspicious and unlikely to be legitimate, given one of the IPs was known and expected, while the other had never been seen before in the environment, and the simultaneous logins from two distant locations were geographically impossible.

Model alert in Darktrace / IDENTITY: Detecting a login from a different source while the user is already active from another source.
Figure 3: Model alert in Darktrace / IDENTITY: Detecting a login from a different source while the user is already active from another source.

Darktrace detected several unusual login attempts, including a successful login from an uncommon US source. Subsequently, Darktrace / NETWORK identified the device associated with this user making external connections to rare endpoints, some of which were only two weeks old. As this customer had integrated Darktrace with Microsoft Defender, the Darktrace detection was enriched by Defender, adding the additional context that the user had likely been compromised in an Adversary-in-the-Middle (AiTM) phishing attack. AiTM phishing attacks occur when a malicious attacker intercepts communications between a user and a legitimate authentication service, potentially leading to account hijacking. These attacks are harder to identify as they can bypass security measures like MFA.

Following this, Darktrace observed the attacker using the now compromised credentials to access password management and change the account's password. Such behavior is common in account takeover incidents, as attackers seek to maintain persistence within the SaaS environment.

While Darktrace’s Autonomous Response was not fully configured on the customer’s SaaS environment, they were subscribed to the Managed Threat Detection service offered by Darktrace’s Security Operations Center (SOC). This 24/7 service ensures that Darktrace’s analysts monitor and investigate emerging suspicious activity, informing customers in real-time. As such, the customer received notification of the compromise and were able to quickly take action to prevent further escalation.

Case 3: Unusual logins, new email rules and outbound spam

Recently, Darktrace has observed a trend in SaaS compromises involving unusual logins, followed by the creation of new email rules, and then outbound spam or phishing campaigns being launched from these accounts.

In October, Darktrace identified a SaaS user receiving an email with the subject line "Re: COMPANY NAME Request for Documents" from an unknown sender using a freemail  account. As freemail addresses require very little personal information to create, threat actors can easily create multiple accounts for malicious purposes while retaining their anonymity.

Within the identified email, Darktrace found file storage links that were likely intended to divert recipients to fraudulent or malicious websites upon interaction. A few minutes after the email was received, the recipient was seen logging in from three different sources located in the US, UK, and the Philippines, all around a similar time. As the customer was based in the Philippines, a login from there was expected and not unusual. However, Darktrace understood that the logins from the UK and US were highly unusual, and no other SaaS accounts had connected from these locations within the same week.

After successfully logging in from the UK, the actor was observed updating a mailbox rule, renaming it to ‘.’ and changing its parameters to move any inbound emails to the deleted items folder and mark them as read.

Figure 4: The updated email rule intended to move any inbound emails to the deleted items folder.

Malicious actors often use ambiguous names like punctuation marks, repetitive letters, and unreadable words to name resources, disguising their rules to avoid detection by legitimate users or administrators. Similarly, attackers have been known to adjust existing rule parameters rather than creating new rules to keep their footprints untracked. In this case, the rule was updated to override an existing email rule and delete all incoming emails. This ensured that any inbound emails, including responses to potential phishing emails sent by the account, would be deleted, allowing the attacker to remain undetected.

Over the next two days, additional login attempts, both successful and failed, were observed from locations in the UK and the Philippines. Darktrace noted multiple logins from the Philippines where the legitimate user was attempting to access their account using a password that had recently expired or been changed, indicating that the attacker had altered the user’s original password as well.

Following this chain of events, over 500 emails titled “Reminder For Document Signed Agreement.10/28/2024” were sent from the SaaS actor’s account to external recipients, all belonging to a different organization within the Philippines.

These emails contained rare attachments with a ‘.htm’ extension, which included programming language that could initiate harmful processes on devices. While inherently not malicious, if used inappropriately, these files could perform unwanted actions such as code execution, malware downloads, redirects to malicious webpages, or phishing upon opening.

Outbound spam seen from the hijacked SaaS account containing a ‘.htm’ attachment.
Figure 5: Outbound spam seen from the hijacked SaaS account containing a ‘.htm’ attachment.

As this customer did not have Autonomous Response enabled for Darktrace / IDENTITY, the unusual activity went unattended, and the compromise was able to escalate to the point of a spam email campaign being launched from the account.

In a similar example on a customer network in EMEA, Darktrace detected unusual logins and the creation of new email rules from a foreign location through a SaaS account. However, in this instance, Autonomous Response was enabled and automatically disabled the compromised account, preventing further malicious activity and giving the customer valuable time to implement their own remediation measures.

Conclusion

Whether it is an unexpected login or an unusual sequence of events – such as a login followed by a phishing email being sent – unauthorized or unexpected activities can pose a significant risk to an organization’s SaaS environment. The threat becomes even greater when these activities escalate to account hijacking, with the compromised account potentially providing attackers access to sensitive corporate data. Organizations, therefore, must have robust SaaS security measures in place to prevent data theft, ensure compliance and maintain continuity and trust.

The Darktrace suite of products is well placed to detect and contain SaaS hijack attempts at multiple stages of an attack. Darktrace / EMAIL identifies initial phishing emails that attackers use to gain access to customer SaaS environments, while Darktrace / IDENTITY detects anomalous SaaS behavior on user accounts which could indicate they have been taken over by a malicious actor.

By identifying these threats in a timely manner and taking proactive mitigative measures, such as logging or disabling compromised accounts, Darktrace prevents escalation and ensures customers have sufficient time to response effectively.

Credit to Min Kim (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

[related-resource]

Appendices

Darktrace Model Detections Case 1

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Compliance / Anomalous New Email Rule

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Access / Unusual External Source for SaaS Credential Us

SaaS / Compromise / Login From Rare Endpoint While User is Active

SaaS / Email Nexus / Unusual Login Location Following Link to File Storage

Antigena / SaaS / Antigena Email Rule Block (Autonomous Response)

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (Autonomous Response)

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block (Autonomous Response)

List of Indicators of Compromise (IoCs)

176.105.224[.]132 – IP address – Unusual SaaS Activity Source

hremployeepyaroll@mail[.]com – Email address – Reply-to email address

MITRE ATT&CK Mapping

Cloud Accounts – DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS – T1078

Outlook Rules – PERSISTENCE – T1137

Cloud Service Dashboard – DISCOVERY – T1538

Compromise Accounts – RESOURCE DEVELOPMENT – T1586

Steal Web Session Cookie – CREDENTIAL ACCESS – T1539

Darktrace Model Detections Case 2

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and Account Update

Security Integration / High Severity Integration Detection

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compromise / Login From Rare Endpoint While User Is Active

SaaS / Compromise / Login from Rare High Risk Endpoint

SaaS / Access / M365 High Risk Level Login

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (Autonomous Response)

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS user Block (Autonomous Response)

List of IoCs

74.207.252[.]129 – IP Address – Suspicious SaaS Activity Source

MITRE ATT&CK Mapping

Cloud Accounts – DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS – T1078

Cloud Service Dashboard – DISCOVERY – T1538

Compromise Accounts – RESOURCE DEVELOPMENT – T1586

Steal Web Session Cookie – CREDENTIAL ACCESS – T1539

Darktrace Model Detections Case 3

SaaS / Compromise / Unusual Login and Outbound Email Spam

SaaS / Compromise / New Email Rule and Unusual Email Activity

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Email Nexus / Unusual Login Location Following Sender Spoof

SaaS / Email Nexus / Unusual Login Location Following Link to File Storage

SaaS / Email Nexus / Possible Outbound Email Spam

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Email Nexus / Suspicious Internal Exchange Activity

SaaS / Compliance / Anomalous New Email Rule

List of IoCs

95.142.116[.]1 – IP Address – Suspicious SaaS Activity Source

154.12.242[.]58 – IP Address – Unusual Source

MITRE ATT&CK Mapping

Cloud Accounts – DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS – T1078

Compromise Accounts – RESOURCE DEVELOPMENT – T1586

Email Accounts – RESOURCE DEVELOPMENT – T1585

Phishing – INITIAL ACCESS – T1566

Outlook Rules – PERSISTENCE – T1137

Internal Spear phishing – LATERAL MOVEMENT - T1534

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Min Kim
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI