Blog
/
Cloud
/
April 17, 2024

Cerber Ransomware: Dissecting the three heads

Cerber ransomware's Linux variant is actively exploiting CVE-2023-22518 in Confluence servers. It uses three UPX-packed C++ payloads: a primary stager, a log checker for environment assessment, and an encryptor that renames files with a .L0CK3D extension.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Apr 2024

Introduction: Cerber ransomware

Researchers at Cado Security Labs (now part of Darktrace) received reports of the Cerber ransomware being deployed onto servers running the Confluence application via the CVE-2023-22518 exploit. [1] There is a large amount of coverage on the Windows variant, however there is very little about the Linux variant. This blog will discuss an analysis of the Linux variant. 

Cerber emerged and was at the peak of its activity around 2016, and has since only occasional campaigns, most recently targeting the aforementioned Confluence vulnerability. It consists of three highly obfuscated C++ payloads, compiled as a 64-bit Executable and Linkable Format (ELF, the format for executable binary files on Linux) and packed with UPX. UPX is a very common packer used by many threat actors. It allows the actual program code to be stored encoded in the binary, and at runtime extracted into memory and executed (“unpacked”). This is done to prevent software from scanning the payload and detecting the malware.

Pure C++ payloads are becoming less common on Linux, with many threat actors now employing newer programming languages such as Rust or Go. [2] This is likely due to the Cerber payload first being released almost 8 years ago. While it will have certainly received updates, the language and tooling choices are likely to have stuck around for the lifetime of the payload.

Initial access

Cado researchers observed instances of the Cerber ransomware being deployed after a threat actor leveraged CVE-2023-22518 in order to gain access to vulnerable instances of Confluence [3]. It is an improper authorization vulnerability that allows an attacker to reset the Confluence application and create a new administrator account using an unprotected configuration restore endpoint used by the setup wizard.

[19/Mar/2024:15:57:24 +0000] - http-nio-8090-exec-10 13.40.171.234 POST /json/setup-restore.action?synchronous=true HTTP/1.1 302 81796ms - - python-requests/2.31.0 
[19/Mar/2024:15:57:24 +0000] - http-nio-8090-exec-3 13.40.171.234 GET /json/setup-restore-progress.action?taskId= HTTP/1.1 200 108ms 283 - python-requests/2.31.0 

Once an administrator account is created, it can be used to gain code execution by uploading & installing a malicious module via the admin panel. In this case, the Effluence web shell plugin is directly uploaded and installed, which provides a web UI for executing arbitrary commands on the host.

Web Shell recreation
Figure 1: Recreation of installing a web shell on a Confluence instance

The threat actor uses this web shell to download and run the primary Cerber payload. In a default install, the Confluence application is executed as the “confluence” user, a low privilege user. As such, the data the ransomware is able to encrypt is limited to files owned by the confluence user. It will of course succeed in encrypting the datastore for the Confluence application, which can store important information. If it was running as a higher privilege user, it would be able to encrypt more files, as it will attempt to encrypt all files on the system.

Primary payload

Summary of payload:

  • Written in C++, highly obfuscated, and packed with UPX
  • Serves as a stager for further payloads
  • Uses a C2 server at 45[.]145[.]6[.]112 to download and unpack further payloads
  • Deletes itself off disk upon execution

The primary payload is packed with UPX, just like the other payloads. Its main purpose is to set up the environment and grab further payloads in order to run.

Upon execution it unpacks itself and tries to create a file at /var/lock/0init-ld.lo. It is speculated that this was meant to serve as a lock file and prevent duplicate execution of the ransomware, however if the lock file already exists the result is discarded, and execution continues as normal anyway. 

It then connects to the (now defunct) C2 server at 45[.]145[.]6[.]112 and pulls down the secondary payload, a log checker, known internally as agttydck. It does this by doing a simple GET /agttydcki64 request to the server using HTTP and writing the payload body out to /tmp/agttydck.bat. It then executes it with /tmp and ck.log passed as arguments. The execution of the payload is detailed in the next section.

Once the secondary payload has finished executing, the primary payload checks if the log file at /tmp/ck.log it wrote exists. If it does, it then proceeds to delete itself and agttydcki64 from the disk. As it is still running in memory, it then downloads the encryptor payload, known internally as agttydcb, and drops it at /tmp/agttydcb.bat. The packing on this payload is more complex. The file command reports it as a DOS executable and the bat extension would imply this as well. However, it does not have the correct magic bytes, and the high entropy of the file suggests that it is potentially encoded or encrypted. Indeed, the primary payload reads it in and then writes out a decoded ELF file back using the same stream, overwriting the content. It is unclear the exact mechanism used to decode agttydcb. The primary payload then executes the decoded agttydcb, the behavior of which is documented in a later section.

2283  openat(AT_FDCWD, "/tmp/agttydcb.bat", O_RDWR) = 4 
2283  read(4, "\353[\254R\333\372\22,\1\251\f\235 'A>\234\33\25E3g\335\0252\344vBg\177\356\321"..., 450560) = 450560 
2283  lseek(4, 0, SEEK_SET)             = 0 
2283  write(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\2\0>\0\1\0\0\0X\334F\0\0\0\0\0"..., 450560) = 450560 
2283  close(4)                          = 0 

Truncated strace output for the decoding process

Log check payload - agttydck

Summary of payload:

  • Written in C++, highly obfuscated, and packed with UPX
  • Tries to write the phrase “success” to a given file passed in arguments
  • Likely a check for sandboxing, or to check the permission level of the malware on the system

The log checker payload, agttydck, likely serves as a permission checker. It is a very simple payload and was easy to analyze statically despite the obfuscation. Like the other payloads, it is UPX packed.

When run, it concatenates each argument passed to it and delimits with forward slashes in order to obtain a full path. In this case, it is passed /tmp and ck.log, which becomes /tmp/ck.log. It then tries to open this file in write mode, and if it succeeds writes the word “success” and returns 0. If it does not succeed, it returns 1.

cleaned-up routine
Figure 2: Cleaned-up routine that writes out the success phrase

The purpose of this check isn’t exactly clear. It could be to check if the tmp directory is writable and that it can write, which may be a check for if the system is too locked down for the encryptor to work. Given the check is run in a process separate to the primary payload, it could also be an attempt to detect sandboxes that may not handle files correctly, resulting in the primary payload not being told about the file created by the child.

Encryptor - agttydck

Summary of payload:

  • Written in C++, highly obfuscated, and packed with UPX
  • Writes log file /tmp/log.0 on start and /tmp/log.1 on completion, likely for debugging
  • Walks the root directory looking for directories it can encrypt
  • Writes a ransom note to each directory
  • Overwrites all files in directory with their encrypted content and adds a .L0CK3D extension

The encryptor, agttydcb, achieves the goal of the ransomware, which is to encrypt files on the filesystem. Like the other payloads, it is UPX packed and written with heavily obfuscated C++. Upon launch, it deletes itself off disk so as to not leave any artefacts. It then creates a file at /tmp/log.0, but with no content. As it creates a second file at /tmp/log.1 (also with no content) after encryption finishes, it is possible these were debug markers that the attacker mistakenly left in.

The encryptor then spawns a new thread to do the actual encryption. The payload attempts to write a ransom note at /<directory>/read-me3.txt. If it succeeds, it will walk all files in the directory and attempt to encrypt them. If it fails, it moves on to the next directory. The encryptor chooses to pick which directories to encrypt by walking the root file system. For example, it will try to encrypt /usr, and then /var, etc.

Cerber ransom note
Figure 3: Ransom note left by Cerber

When it has identified a file to encrypt, it opens a read-write file stream to the file and reads in the entire file. It is then encrypted in memory before it seeks to the start of the stream and writes the encrypted data, overwriting the file content, and rendering the file fully encrypted. It then renames the file to have the .L0CK3D extension. Rewriting the same file instead of making a new file and deleting the old one is useful on Linux as directories may be set to append only, preventing the outright deletion of files. Rewriting the file may also rewrite the data on the underlying storage, making recovery with advanced forensics also impossible.

2290  openat(AT_FDCWD, "/home/ubuntu/example", O_RDWR) = 6 
2290  read(6, "file content"..., 3691) = 3691 
2290  write(6, "\241\253\270'\10\365?\2\300\304\275=\30B\34\230\254\357\317\242\337UD\266\362\\\210\215\245!\255f"
..., 3691) = 3691 
2290  close(6)                          = 0 
2290  rename("/home/ubuntu/example", "/home/ubuntu/example.L0CK3D") = 0 

Truncated strace of the encryption process

Once this finishes, it tries to delete itself again (which fails as it already deleted itself) and creates /tmp/log.1. It then gracefully exits. Despite the ransom note claiming the files were exfiltrated, Cado researchers did not observe any behavior that showed this.

Conclusion

Cerber is a relatively sophisticated, albeit aging, ransomware payload. While the use of the Confluence vulnerability allows it to compromise a large amount of likely high value systems, often the data it is able to encrypt will be limited to just the confluence data and in well configured systems this will be backed up. This greatly limits the efficacy of the ransomware in extracting money from victims, as there is much less incentive to pay up.

IoCs

The payloads are packed with UPX so will match against existing UPX Yara rules.

Hashes (sha256)

cerber_primary 4ed46b98d047f5ed26553c6f4fded7209933ca9632b998d265870e3557a5cdfe

agttydcb 1849bc76e4f9f09fc6c88d5de1a7cb304f9bc9d338f5a823b7431694457345bd

agttydck ce51278578b1a24c0fc5f8a739265e88f6f8b32632cf31bf7c142571eb22e243

IPs

C2 (Defunct) 45[.]145[.]6[.]112

References

  1. https://confluence.atlassian.com/security/cve-2023-22518-improper-authorization-vulnerability-in-confluence-data-center-and-server-1311473907.html
  1. https://www.proofpoint.com/uk/threat-reference/cerber-ransomware  
  1. https://nvd.nist.gov/vuln/detail/CVE-2023-22518

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

Cloud

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

Network

/

September 23, 2025

ShadowV2: An emerging DDoS for hire botnet

ShadowV2: An emerging DDoS for hire botnet Default blog imageDefault blog image

Introduction: ShadowV2 DDoS

Darktrace's latest investigation uncovered a novel campaign that blends traditional malware with modern devops technology.

At the center of this campaign is a Python-based command-and-control (C2) framework hosted on GitHub CodeSpaces. This campaign also utilizes a Python based spreader with a multi-stage Docker deployment as the initial access vector.

The campaign further makes use of a Go-based Remote Access Trojan (RAT) that implements a RESTful registration and polling mechanism, enabling command execution and communication with its operators.

ShadowV2 attack techniques

What sets this campaign apart is the sophistication of its attack toolkit.

The threat actors employ advanced methods such as HTTP/2 rapid reset, a Cloudflare under attack mode (UAM) bypass, and large-scale HTTP floods, demonstrating a capability to combine distributed denial-of-service (DDoS) techniques with targeted exploitation.

With the inclusion of an OpenAPI specification, implemented with FastAPI and Pydantic and a fully developed login panel and operator interface, the infrastructure seems to resemble a “DDoS-as-a-service” platform rather than a traditional botnet, showing the extent to which modern malware increasingly mirrors legitimate cloud-native applications in both design and usability.

Analysis of a SadowV2 attack

Initial access

The initial compromise originates from a Python script hosted on GitHub CodeSpaces. This can be inferred from the observed headers:

User-Agent: docker-sdk-python/7.1.0

X-Meta-Source-Client: github/codespaces

The user agent shows that the attacker is using the Python Docker SDK, a library for Python programs that allows them to interact with Docker to create containers. The X-Meta-Source-Client appears to have been injected by GitHub into the request to allow for attribution, although there is no documentation online about this header.

The IP the connections originate from is 23.97.62[.]139, which is a Microsoft IP based in Singapore. This aligns with expectations as GitHub is owned by Microsoft.

This campaign targets exposed Docker daemons, specifically those running on AWS EC2. Darktrace runs a number of honeypots across multiple cloud providers and has only observed attacks against honeypots running on AWS EC2. By default, Docker is not accessible to the Internet, however, can be configured to allow external access. This can be useful for managing complex deployments where remote access to the Docker API is needed.

Typically, most campaigns targeting Docker will either take an existing image from Docker Hub and deploy their tools within it, or upload their own pre-prepared image to deploy. This campaign works slightly differently; it first spawns a generic “setup” container and installs a number of tools within it. This container is then imaged and deployed as a live container with the malware arguments passed in via environmental variables.

Attacker creates a blank container from an Ubuntu image.
Figure 1: Attacker creates a blank container from an Ubuntu image.
Attacker sets up their tools for the attack.
Figure 2: Attacker sets up their tools for the attack.
 Attacker deploys a new container using the image from the setup container.
Figure 3: Attacker deploys a new container using the image from the setup container.

It is unclear why the attackers chose this approach - one possibility is that the actor is attempting to avoid inadvertently leaving forensic artifacts by performing the build on the victim machine, rather than building it themselves and uploading it.

Malware analysis

The Docker container acts as a wrapper around a single binary, dropped in /app/deployment. This is an ELF binary written in Go, a popular choice for modern malware. Helpfully, the binary is unstripped, making analysis significantly easier.

The current version of the malware has not been reported by OSINT providers such as VirusTotal. Using the domain name from the MASTER_ADDR variable and other IoCs, we were able to locate two older versions of the malware that were submitted to VirusTotal on the June 25 and July 30 respectively [1] [2].  Neither of these had any detections and were only submitted once each using the web portal from the US and Canada respectively. Darktrace first observed the attack against its honeypot on June 24, so it could be a victim of this campaign submitting the malware to VirusTotal. Due to the proximity of the start of the attacks, it could also be the attacker testing for detections, however it is not possible to know for certain.

The malware begins by phoning home, using the MASTER_ADDR and VPS_NAME identifiers passed in from the Docker run environmental variables. In addition, the malware derives a unique VPS_ID, which is the VPS_NAME concatenated with the current unix timestamp. The VPS_ID is used for all communications with the C2 server as the identifier for the specific implant. If the malware is restarted, or the victim is re-infected, the C2 server will inform the implant of its original VPS_ID to ensure continuity.

Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.
Figure 4: Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.

From there, the malware then spawns two main loops that will remain active for the lifetime of the implant. Every second, it sends a heartbeat to the C2 by sending the VPS_ID to hxxps://shadow.aurozacloud[.]xyz/api/vps/heartbeat via POST request. Every 5 seconds, it retrieves hxxps://shadow.aurozacloud[.]xyz/api/vps/poll/<VPS ID> via a GET request to poll for new commands.

The poll mechanism shadow v2
Figure 5: The poll mechanism.

At this stage, Darktrace security researchers wrote a custom client that ran on the server infected by the attacker that mimicked their implant. The goal was to intercept commands from the C2. Based on this, it was observed initiating an attack against chache08[.]werkecdn[.]me using a 120 thread HTTP2 rapid reset attack. This site appears to be hosted on an Amsterdam VPS provided by FDCServers, a server hosting company. It was not possible to identify what normally runs on this site, as it returns a 403 Forbidden error when visited.

Darktrace’s code analysis found that the returned commands contain the following fields:

  • Method (e.g. GET, POST)
  • A unique ID for the attack
  • A URL endpoint used to report attack statistics
  • The target URL & port
  • The duration of the attack
  • The number of threads to use
  • An optional proxy to send HTTP requests through

The malware then spins up several threads, each running a configurable number of HTTP clients using Valyala’s fasthttp library, an open source Go library for making high-performance HTTP requests. After this is complete, it uses these clients to perform an HTTP flood attack against the target.

A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to the C2.
Figure 6: A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to the C2.

In addition, it also features several flags to enable different bypass mechanisms to augment the malware:

  • WordPress bypass (does not appear to be implemented - the flag is not used anywhere)
  • Random query strings appended to the URL
  • Spoofed forwarding headers with random IP addresses
  • Cloudflare under-attack-mode (UAM) bypass
  • HTTP2 rapid reset

The most interesting of these is the Cloudflare UAM bypass mechanism. When this is enabled, the malware will attempt to use a bundled ChromeDP binary to solve the Cloudflare JavaScript challenge that is presented to new visitors. If this succeeds, the clearance cookie obtained is then included in subsequent requests. This is unlikely to work in most cases as headless Chrome browsers are often flagged, and a regular CAPTCHA is instead served.

The UAM bypass success snippet.
Figure 7: The UAM bypass success snippet.

Additionally, the malware has a flag to enable an HTTP2 rapid reset attack mode instead of a regular HTTP flood. In HTTP2, a client can create thousands of requests within a single connection using multiplexing, allowing sites to load faster. The number of request streams per connection is capped however, so in a rapid reset attack many requests are made and then immediately cancelled to allow more requests to be created. This allows a single client to execute vastly more requests per second and use more server resources than it otherwise would, allowing for more effective denial-of-service (DoS) attacks.

 The HTTP2 rapid reset snippet from the main attack function.
Figure 8: The HTTP2 rapid reset snippet from the main attack function.

API/C2 analysis

As mentioned throughout the malware analysis section, the malware communicates with a C2 server using HTTP. The server is behind Cloudflare, which obscures its hosting location and prevents analysis. However, based on analysis of the spreader, it's likely running on GitHub CodeSpaces.

When sending a malformed request to the API, an error generated by the Pydantic library is returned:

{"detail":[{"type":"missing","loc":["body","vps_id"],"msg":"Field required","input":{"vps_name":"xxxxx"},"url":"https://errors.pydantic.dev/2.11/v/missing"}]}

This shows they are using Python for the API, which is the same language that the spreader is written in.

One of the larger frameworks that ships with Pydantic is FastAPI, which also ships with Swagger. The malware author left this publicly exposed, and Darktrace’s researchers were able to obtain a copy of their API documentation. The author appears to have noticed this however, as subsequent attempts to access it now returns a HTTP 404 Not Found error.

Swagger UI view based on the obtained OpenAPI spec.
Figure 9: Swagger UI view based on the obtained OpenAPI spec.

This is useful to have as it shows all the API endpoints, including the exact fields they take and return, along with comments on each endpoint written by the attacker themselves.

It is very likely a DDoS for hire platform (or at the very least, designed for multi-tenant use) based on the extensive user API, which features authentication, distinctions between privilege level (admin vs user), and limitations on what types of attack a user can execute. The screenshot below shows the admin-only user create endpoint, with the default limits.

The admin-only user create endpoint shadow v2
Figure 10: The admin-only user create endpoint.

The endpoint used to launch attacks can also be seen, which lines up with the options previously seen in the malware itself. Interestingly, this endpoint requires a list of zombie systems to launch the attack from. This is unusual as most DDoS for hire services will decide this internally or just launch the attack from every infected host (zombie). No endpoints that returned a list of zombies were found, however, it’s possible one exists as the return types are not documented for all the API endpoints.

The attack start endpoint shadow v2
Figure 11: The attack start endpoint.

There is also an endpoint to manage a blacklist of hosts that cannot be attacked. This could be to stop users from launching attacks against sites operated by the malware author, however it’s also possible the author could be attempting to sell protection to victims, which has been seen previously with other DDoS for hire services.

Blacklist endpoints shadow v2 DDoS
Figure 12: Blacklist endpoints.

Attempting to visit shadow[.]aurozacloud[.]xyz results in a seizure notice. It is most likely fake the same backend is still in use and all of the API endpoints continue to work. Appending /login to the end of the path instead brings up the login screen for the DDoS platform. It describes itself as an “advanced attack platform”, which highlights that it is almost certainly a DDoS for hire service. The UI is high quality, written in Tailwind, and even features animations.

The fake seizure notice.
Figure 13: The fake seizure notice.
The login UI at /login.
Figure 14: The login UI at /login.

Conclusion

By leveraging containerization, an extensive API, and with a full user interface, this campaign shows the continued development of cybercrime-as-a-service. The ability to deliver modular functionality through a Go-based RAT and expose a structured API for operator interaction highlights how sophisticated some threat actors are.

For defenders, the implications are significant. Effective defense requires deep visibility into containerized environments, continuous monitoring of cloud workloads, and behavioral analytics capable of identifying anomalous API usage and container orchestration patterns. The presence of a DDoS-as-a-service panel with full user functionality further emphasizes the need for defenders to think of these campaigns not as isolated tools but as evolving platforms.

Appendices

References

1. https://www.virustotal.com/gui/file/1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6

2. https://www.virustotal.com/gui/file/1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c

IoCs

Malware hashes (SHA256)

●      2462467c89b4a62619d0b2957b21876dc4871db41b5d5fe230aa7ad107504c99

●      1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6

●      1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c

C2 domain

●      shadow.aurozacloud[.]xyz

Spreader IPs

●      23.97.62[.]139

●      23.97.62[.]136

Yara rule

rule ShadowV2 {

meta:

author = "nathaniel.bill@darktrace.com"

description = "Detects ShadowV2 botnet implant"

strings:

$string1 = "shadow-go"

$string2 = "shadow.aurozacloud.xyz"

$string3 = "[SHADOW-NODE]"

$symbol1 = "main.registerWithMaster"

$symbol2 = "main.handleStartAttack"

$symbol3 = "attacker.bypassUAM"

$symbol4 = "attacker.performHTTP2RapidReset"

$code1 = { 48 8B 05 ?? ?? ?? ?? 48 8B 1D ?? ?? ?? ?? E8 ?? ?? ?? ?? 48 8D 0D ?? ?? ?? ?? 48 89 8C 24 38 01 00 00 48 89 84 24 40 01 00 00 48 8B 4C 24 40 48 BA 00 09 6E 88 F1 FF FF FF 48 8D 04 0A E8 ?? ?? ?? ?? 48 8D 0D ?? ?? ?? ?? 48 89 8C 24 48 01 00 00 48 89 84 24 50 01 00 00 48 8D 05 ?? ?? ?? ?? BB 05 00 00 00 48 8D 8C 24 38 01 00 00 BF 02 00 00 00 48 89 FE E8 ?? ?? ?? ?? }

$code2 = { 48 89 35 ?? ?? ?? ?? 0F B6 94 24 80 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 81 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 82 02 00 00 88 15 ?? ?? ?? ?? 0F B6 94 24 83 02 00 00 88 15 ?? ?? ?? ?? 48 8B 05 ?? ?? ?? ?? }

$code3 = { 48 8D 15 ?? ?? ?? ?? 48 89 94 24 68 04 00 00 48 C7 84 24 78 04 00 00 15 00 00 00 48 8D 15 ?? ?? ?? ?? 48 89 94 24 70 04 00 00 48 8D 15 ?? ?? ?? ?? 48 89 94 24 80 04 00 00 48 8D 35 ?? ?? ?? ?? 48 89 B4 24 88 04 00 00 90 }

condition:

uint16(0) == 0x457f and (2 of ($string*) or 2 of ($symbol*) or any of ($code*))

}

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI