Blog
/
Cloud
/
July 31, 2024

CDR is just NDR for the Cloud... Right?

As cloud adoption surges, the need for scalable, cloud-native security is paramount. This blog explores whether Cloud Detection and Response (CDR) is merely Network Detection and Response (NDR) tailored for the cloud, highlighting the unique challenges and essential solutions SOC teams require to secure dynamic cloud environments effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Director of Product, Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jul 2024

The need for scalable cloud-native security

The cybersecurity landscape is undergoing a rapid transformation driven by the accelerated adoption of cloud computing, compelling organizations to reevaluate their security strategies. According to Forrester’s Infrastructure Cloud Survey, 2023, cloud decision-makers who are moving to a cloud computing infrastructure estimated they have already moved 39% of their application portfolio to the cloud and intend to move another 53% in the next two years [1].

This explosive growth underscores not only the increased dependency on cloud services, but also the evolving sophistication of cyber threats targeting these platforms, and the critical need for dedicated security measures tailored to cloud infrastructures — thereby making cloud security a pivotal focus for Security Operations Center (SOC) teams.

As organizations increasingly migrate to cloud environments and their reliance on cloud infrastructures deepens, they encounter new security challenges that require reevaluating their security strategies. Traditional measures like Network Detection and Response (NDR) are being reassessed in favor of more dynamic, scalable cloud-native solutions.

However, can we truly say that cloud detection and response (CDR) is fundamentally different? Or is it simply an evolution of NDR tailored for the cloud?

Cloud Detection and Response (CDR) vs Network Detection and Response (NDR)

Cloud Detection and Response (CDR) has emerged as a pivotal technology in the race against threat actors targeting cloud assets. CDR is typically centered around the same foundational principles as NDR. As such, NDR providers are well placed to provide these capabilities within dynamic cloud environments – particularly those providers that are built upon the foundation of understanding your business, its digital footprint, and leveraging that understanding to detect subtle deviations and highlighting anomalies as opposed to pre training or relying on rules and signatures.

However, there are unique challenges within cloud environments that require a wider, richer, context-aware approach.

Why SOC Teams Care

Widespread UseThe shift towards cloud services is no longer a trend but a standard practice across industries. Organizations increasingly rely on cloud infrastructures for essential operations across IaaS, PaaS, and SaaS platforms. According to Gartner, worldwide end-user spending on public cloud services is forecast to grow 20.4% to total $678.8 billion in 2024, up from $563.6 billion in 2023 [2]. This widespread adoption necessitates a security approach that can operate seamlessly across varied cloud environments, addressing both the scalability and the agility that these platforms offer.

Sophisticated AttacksCyber threats have evolved in sophistication, specifically targeting cloud platforms due to their growing prevalence. Attackers exploit the dynamic nature of cloud services, where traditional security measures often fall short. The cloud has emerged as a major target for threat actors who want to control access to, manipulate, and steal that data. This makes cloud resources a bigger target than ever for attackers. According to the IBM Cost of a Data Breach 2023 report, 82% of breaches involved data stored in the cloud [3]. Examples include data breaches initiated through misconfigured storage instances or through the exploitation of incomplete data deletion processes, highlighting the need for cloud-specific security responses.

Dynamic EnvironmentsCloud environments are inherently dynamic, characterized by the rapid provisioning and de-provisioning of resources, this fluidity presents a significant challenge for maintaining continuous security oversight, organizations need to be able to see what individual assets in the cloud look like at any given moment, who or what can access those, but also to be able to detect and respond to changes in real time. Unlike traditional infrastructure, detection and response in the cloud is challenging because of the ephemeral nature of some cloud assets and the velocity and volume of new app deployment – traditional signature-based detections will often struggle to work with such data.

What SOC Teams Need

Centralized VisibilityEffective security management requires a comprehensive, unified view spanning all operational environments including multi-cloud platforms and on-premises datacenters. Furthermore, in today's complex IT landscape, where organizations operate across both on-premises and various cloud environments, the need for centralized visibility becomes paramount. This comprehensive oversight is crucial for detecting anomalies and potential threats in real time, allowing SOC teams to manage security from a single source of truth, despite the dispersed nature of cloud assets and the heterogeneity of on-premises resources. By integrating these views, organizations can ensure a seamless security posture that encompasses all operational environments, enhancing their ability to respond swiftly to incidents and reduce security gaps.

AutomationGiven the vast scale and complexity of cloud operations, automation in detection and response processes is indispensable. Automated security solutions can instantly respond to threats, or adjust permissions across the cloud, enhancing both the efficiency and effectiveness of security measures.

Containment and RemediationThe capability for swift containment and remediation of security incidents is vital to minimize their impact on business operations. Automated response mechanisms that can isolate affected systems, revoke access, or reroute traffic until the threat is neutralized are essential components of modern CDR solutions.

Unpacking the Essentials: What Sets CDR Apart from NDR

While CDR and NDR share similar goals of threat mitigation, the context within cloud environments brings additional complexities:

Who: The identification of user roles and access patterns in cloud environments is crucial for detecting insider threats or compromised accounts. For example, an account behaving irregularly or accessing unusual data points may indicate a security breach.

What: Understanding what resources are deployed in the cloud (such as VMs, containers, and serverless functions) and the types of data they handle helps prioritize security efforts. Protecting data with varying sensitivity levels requires different security protocols.

Where: The geographic distribution of cloud datacenters affects regulatory compliance and data sovereignty. Security measures must consider these factors to ensure that data storage and processing comply with local laws and regulations.

How: Monitoring the configuration and usage of cloud services helps in identifying misconfigurations and anomalous usage patterns, which are common vectors for attacks. Tools that can automatically scan and rectify configurations in real time are particularly valuable in maintaining cloud security.

Key takeaways and benefits of CDR

As cloud adoption continues to surge, the strategic importance of CDR becomes increasingly evident. However, NDR vendors are well-positioned to provide these capabilities, especially those who deeply understand customer environments by learning the pattern of life of resources rather than relying on static rules and signatures.

Cloud environments, at their core, are still comprised of networks for communication. Interactions between cloud resources need to be monitored in real time, and access to these resources needs to be tracked and managed. As the cloud changes dynamically, the understanding and visualization of what is deployed and where needs to be updated quickly. Above all effective and proportional cloud-native response needs to be provided to mitigate threats and avoid business disruption.

Moreover, the ideal solutions will not only monitor network interactions but also bring in cloud contextual awareness. By combining these insights, SOC teams can gain a deeper understanding of permissions, assess risk vulnerabilities, and integrate all these elements into a single, cohesive platform. Importantly, SOC teams need to go beyond detection and response to actively mitigate potential misconfigurations and stay preventative. After all, proactive security is much better than reactive. By leveraging such comprehensive solutions, SOC teams can better equip themselves to tackle the modern cybersecurity landscape, ensuring robust, responsive, and adaptable defenses.

Learn more about Darktrace / CLOUD

Darktrace / CLOUD is intelligent cloud security powered by Self-Learning AI that delivers continuous, context-aware visibility and monitoring of cloud assets to unlock real-time detection and response​,​ and proactive cloud risk management. Read more about our cloud security solution here.

References

[1]  Gartner Forecasts Worldwide Public Cloud End-User Spending to Surpass $675 Billion in 2024

[2]  Public Cloud Market Insights, 2023 | Forrester

[3]  IBM Cost of a Data Breach 2023 Report

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Director of Product, Cloud Security

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI