Blog
/

Cloud

/
July 31, 2024

CDR is just NDR for the Cloud... Right?

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jul 2024
As cloud adoption surges, the need for scalable, cloud-native security is paramount. This blog explores whether Cloud Detection and Response (CDR) is merely Network Detection and Response (NDR) tailored for the cloud, highlighting the unique challenges and essential solutions SOC teams require to secure dynamic cloud environments effectively.

The need for scalable cloud-native security

The cybersecurity landscape is undergoing a rapid transformation driven by the accelerated adoption of cloud computing, compelling organizations to reevaluate their security strategies. According to Forrester’s Infrastructure Cloud Survey, 2023, cloud decision-makers who are moving to a cloud computing infrastructure estimated they have already moved 39% of their application portfolio to the cloud and intend to move another 53% in the next two years [1].

This explosive growth underscores not only the increased dependency on cloud services, but also the evolving sophistication of cyber threats targeting these platforms, and the critical need for dedicated security measures tailored to cloud infrastructures — thereby making cloud security a pivotal focus for Security Operations Center (SOC) teams.

As organizations increasingly migrate to cloud environments and their reliance on cloud infrastructures deepens, they encounter new security challenges that require reevaluating their security strategies. Traditional measures like Network Detection and Response (NDR) are being reassessed in favor of more dynamic, scalable cloud-native solutions.

However, can we truly say that cloud detection and response (CDR) is fundamentally different? Or is it simply an evolution of NDR tailored for the cloud?

Cloud Detection and Response (CDR) vs Network Detection and Response (NDR)

Cloud Detection and Response (CDR) has emerged as a pivotal technology in the race against threat actors targeting cloud assets. CDR is typically centered around the same foundational principles as NDR. As such, NDR providers are well placed to provide these capabilities within dynamic cloud environments – particularly those providers that are built upon the foundation of understanding your business, its digital footprint, and leveraging that understanding to detect subtle deviations and highlighting anomalies as opposed to pre training or relying on rules and signatures.

However, there are unique challenges within cloud environments that require a wider, richer, context-aware approach.

Why SOC Teams Care

Widespread UseThe shift towards cloud services is no longer a trend but a standard practice across industries. Organizations increasingly rely on cloud infrastructures for essential operations across IaaS, PaaS, and SaaS platforms. According to Gartner, worldwide end-user spending on public cloud services is forecast to grow 20.4% to total $678.8 billion in 2024, up from $563.6 billion in 2023 [2]. This widespread adoption necessitates a security approach that can operate seamlessly across varied cloud environments, addressing both the scalability and the agility that these platforms offer.

Sophisticated AttacksCyber threats have evolved in sophistication, specifically targeting cloud platforms due to their growing prevalence. Attackers exploit the dynamic nature of cloud services, where traditional security measures often fall short. The cloud has emerged as a major target for threat actors who want to control access to, manipulate, and steal that data. This makes cloud resources a bigger target than ever for attackers. According to the IBM Cost of a Data Breach 2023 report, 82% of breaches involved data stored in the cloud [3]. Examples include data breaches initiated through misconfigured storage instances or through the exploitation of incomplete data deletion processes, highlighting the need for cloud-specific security responses.

Dynamic EnvironmentsCloud environments are inherently dynamic, characterized by the rapid provisioning and de-provisioning of resources, this fluidity presents a significant challenge for maintaining continuous security oversight, organizations need to be able to see what individual assets in the cloud look like at any given moment, who or what can access those, but also to be able to detect and respond to changes in real time. Unlike traditional infrastructure, detection and response in the cloud is challenging because of the ephemeral nature of some cloud assets and the velocity and volume of new app deployment – traditional signature-based detections will often struggle to work with such data.

What SOC Teams Need

Centralized VisibilityEffective security management requires a comprehensive, unified view spanning all operational environments including multi-cloud platforms and on-premises datacenters. Furthermore, in today's complex IT landscape, where organizations operate across both on-premises and various cloud environments, the need for centralized visibility becomes paramount. This comprehensive oversight is crucial for detecting anomalies and potential threats in real time, allowing SOC teams to manage security from a single source of truth, despite the dispersed nature of cloud assets and the heterogeneity of on-premises resources. By integrating these views, organizations can ensure a seamless security posture that encompasses all operational environments, enhancing their ability to respond swiftly to incidents and reduce security gaps.

AutomationGiven the vast scale and complexity of cloud operations, automation in detection and response processes is indispensable. Automated security solutions can instantly respond to threats, or adjust permissions across the cloud, enhancing both the efficiency and effectiveness of security measures.

Containment and RemediationThe capability for swift containment and remediation of security incidents is vital to minimize their impact on business operations. Automated response mechanisms that can isolate affected systems, revoke access, or reroute traffic until the threat is neutralized are essential components of modern CDR solutions.

Unpacking the Essentials: What Sets CDR Apart from NDR

While CDR and NDR share similar goals of threat mitigation, the context within cloud environments brings additional complexities:

Who: The identification of user roles and access patterns in cloud environments is crucial for detecting insider threats or compromised accounts. For example, an account behaving irregularly or accessing unusual data points may indicate a security breach.

What: Understanding what resources are deployed in the cloud (such as VMs, containers, and serverless functions) and the types of data they handle helps prioritize security efforts. Protecting data with varying sensitivity levels requires different security protocols.

Where: The geographic distribution of cloud datacenters affects regulatory compliance and data sovereignty. Security measures must consider these factors to ensure that data storage and processing comply with local laws and regulations.

How: Monitoring the configuration and usage of cloud services helps in identifying misconfigurations and anomalous usage patterns, which are common vectors for attacks. Tools that can automatically scan and rectify configurations in real time are particularly valuable in maintaining cloud security.

Key takeaways and benefits of CDR

As cloud adoption continues to surge, the strategic importance of CDR becomes increasingly evident. However, NDR vendors are well-positioned to provide these capabilities, especially those who deeply understand customer environments by learning the pattern of life of resources rather than relying on static rules and signatures.

Cloud environments, at their core, are still comprised of networks for communication. Interactions between cloud resources need to be monitored in real time, and access to these resources needs to be tracked and managed. As the cloud changes dynamically, the understanding and visualization of what is deployed and where needs to be updated quickly. Above all effective and proportional cloud-native response needs to be provided to mitigate threats and avoid business disruption.

Moreover, the ideal solutions will not only monitor network interactions but also bring in cloud contextual awareness. By combining these insights, SOC teams can gain a deeper understanding of permissions, assess risk vulnerabilities, and integrate all these elements into a single, cohesive platform. Importantly, SOC teams need to go beyond detection and response to actively mitigate potential misconfigurations and stay preventative. After all, proactive security is much better than reactive. By leveraging such comprehensive solutions, SOC teams can better equip themselves to tackle the modern cybersecurity landscape, ensuring robust, responsive, and adaptable defenses.

Learn more about Darktrace / CLOUD

Darktrace / CLOUD is intelligent cloud security powered by Self-Learning AI that delivers continuous, context-aware visibility and monitoring of cloud assets to unlock real-time detection and response​,​ and proactive cloud risk management. Read more about our cloud security solution here.

References

[1]  Gartner Forecasts Worldwide Public Cloud End-User Spending to Surpass $675 Billion in 2024

[2]  Public Cloud Market Insights, 2023 | Forrester

[3]  IBM Cost of a Data Breach 2023 Report

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Adam Stevens
Director of Product, Cloud Security
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

October 4, 2024

/

Inside the SOC

From Call to Compromise: Darktrace’s Response to a Vishing-Induced Network Attack

Default blog imageDefault blog image

What is vishing?

Vishing, or voice phishing, is a type of cyber-attack that utilizes telephone devices to deceive targets. Threat actors typically use social engineering tactics to convince targets that they can be trusted, for example, by masquerading as a family member, their bank, or trusted a government entity. One method frequently used by vishing actors is to intimidate their targets, convincing them that they may face monetary fines or jail time if they do not provide sensitive information.

What makes vishing attacks dangerous to organizations?

Vishing attacks utilize social engineering tactics that exploit human psychology and emotion. Threat actors often impersonate trusted entities and can make it appear as though a call is coming from a reputable or known source.  These actors often target organizations, specifically their employees, and pressure them to obtain sensitive corporate data, such as privileged credentials, by creating a sense of urgency, intimidation or fear. Corporate credentials can then be used to gain unauthorized access to an organization’s network, often bypassing traditional security measures and human security teams.

Darktrace’s coverage of vishing attack

On August 12, 2024, Darktrace / NETWORK identified malicious activity on the network of a customer in the hospitality sector. The customer later confirmed that a threat actor had gained unauthorized access through a vishing attack. The attacker successfully spoofed the IT support phone number and called a remote employee, eventually leading to the compromise.

Figure 1: Timeline of events in the kill chain of this attack.

Establishing a Foothold

During the call, the remote employee was requested to authenticate via multi-factor authentication (MFA). Believing the caller to be a member of their internal IT support, using the legitimate caller ID, the remote user followed the instructions and confirmed the MFA prompt, providing access to the customer’s network.

This authentication allowed the threat actor to login into the customer’s environment by proxying through their Virtual Private Network (VPN) and gain a foothold in the network. As remote users are assigned the same static IP address when connecting to the corporate environment, the malicious actor appeared on the network using the correct username and IP address. While this stealthy activity might have evaded traditional security tools and human security teams, Darktrace’s anomaly-based threat detection identified an unusual login from a different hostname by analyzing NTLM requests from the static IP address, which it determined to be anomalous.

Observed Activity

  • On 2024-08-12 the static IP was observed using a credential belonging to the remote user to initiate an SMB session with an internal domain controller, where the authentication method NTLM was used
  • A different hostname from the usual hostname associated with this remote user was identified in the NTLM authentication request sent from a device with the static IP address to the domain controller
  • This device does not appear to have been seen on the network prior to this event.

Darktrace, therefore, recognized that this login was likely made by a malicious actor.

Internal Reconnaissance

Darktrace subsequently observed the malicious actor performing a series of reconnaissance activities, including LDAP reconnaissance, device hostname reconnaissance, and port scanning:

  • The affected device made a 53-second-long LDAP connection to another internal domain controller. During this connection, the device obtained data about internal Active Directory (AD) accounts, including the AD account of the remote user
  • The device made HTTP GET requests (e.g., HTTP GET requests with the Target URI ‘/nice ports,/Trinity.txt.bak’), indicative of Nmap usage
  • The device started making reverse DNS lookups for internal IP addresses.
Figure 2: Model alert showing the IP address from which the malicious actor connected and performed network scanning activities via port 9401.
Figure 3: Model Alert Event Log showing the affected device connecting to multiple internal locations via port 9401.

Lateral Movement

The threat actor was also seen making numerous failed NTLM authentication requests using a generic default Windows credential, indicating an attempt to brute force and laterally move through the network. During this activity, Darktrace identified that the device was using a different hostname than the one typically used by the remote employee.

Cyber AI Analyst

In addition to the detection by Darktrace / NETWORK, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the ongoing activity. The investigation was able to correlate the seemingly separate events together into a broader incident, continuously adding new suspicious linked activities as they occurred.

Figure 4: Cyber AI Analyst investigation showing the activity timeline, and the activities associated with the incident.

Upon completing the investigation, Cyber AI Analyst provided the customer with a comprehensive summary of the various attack phases detected by Darktrace and the associated incidents. This clear presentation enabled the customer to gain full visibility into the compromise and understand the activities that constituted the attack.

Figure 5: Cyber AI Analyst displaying the observed attack phases and associated model alerts.

Darktrace Autonomous Response

Despite the sophisticated techniques and social engineering tactics used by the attacker to bypass the customer’s human security team and existing security stack, Darktrace’s AI-driven approach prevented the malicious actor from continuing their activities and causing more harm.

Darktrace’s Autonomous Response technology is able to enforce a pattern of life based on what is ‘normal’ and learned for the environment. If activity is detected that represents a deviation from expected activity from, a model alert is triggered. When Darktrace’s Autonomous Response functionality is configured in autonomous response mode, as was the case with the customer, it swiftly applies response actions to devices and users without the need for a system administrator or security analyst to perform any actions.

In this instance, Darktrace applied a number of mitigative actions on the remote user, containing most of the activity as soon as it was detected:

  • Block all outgoing traffic
  • Enforce pattern of life
  • Block all connections to port 445 (SMB)
  • Block all connections to port 9401
Figure 6: Darktrace’s Autonomous Response actions showing the actions taken in response to the observed activity, including blocking all outgoing traffic or enforcing the pattern of life.

Conclusion

This vishing attack underscores the significant risks remote employees face and the critical need for companies to address vishing threats to prevent network compromises. The remote employee in this instance was deceived by a malicious actor who spoofed the phone number of internal IT Support and convinced the employee to perform approve an MFA request. This sophisticated social engineering tactic allowed the attacker to proxy through the customer’s VPN, making the malicious activity appear legitimate due to the use of static IP addresses.

Despite the stealthy attempts to perform malicious activities on the network, Darktrace’s focus on anomaly detection enabled it to swiftly identify and analyze the suspicious behavior. This led to the prompt determination of the activity as malicious and the subsequent blocking of the malicious actor to prevent further escalation.

While the exact motivation of the threat actor in this case remains unclear, the 2023 cyber-attack on MGM Resorts serves as a stark illustration of the potential consequences of such threats. MGM Resorts experienced significant disruptions and data breaches following a similar vishing attack, resulting in financial and reputational damage [1]. If the attack on the customer had not been detected, they too could have faced sensitive data loss and major business disruptions. This incident underscores the critical importance of robust security measures and vigilant monitoring to protect against sophisticated cyber threats.

Credit to Rajendra Rushanth (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

  • Device / Unusual LDAP Bind and Search Activity
  • Device / Attack and Recon Tools
  • Device / Network Range Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / UDP Enumeration
  • Device / Large Number of Model Breaches
  • Device / Network Scan
  • Device / Multiple Lateral Movement Model Breaches (Enhanced Monitoring)
  • Device / Reverse DNS Sweep
  • Device / SMB Session Brute Force (Non-Admin)

List of Indicators of Compromise (IoCs)

IoC - Type – Description

/nice ports,/Trinity.txt.bak - URI – Unusual Nmap Usage

MITRE ATT&CK Mapping

Tactic – ID – Technique

INITIAL ACCESS – T1200 – Hardware Additions

DISCOVERY – T1046 – Network Service Scanning

DISCOVERY – T1482 – Domain Trust Discovery

RECONNAISSANCE – T1590 – IP Addresses

T1590.002 – DNS

T1590.005 – IP Addresses

RECONNAISSANCE – T1592 – Client Configurations

T1592.004 – Client Configurations

RECONNAISSANCE – T1595 – Scanning IP Blocks

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

References

[1] https://www.bleepingcomputer.com/news/security/securing-helpdesks-from-hackers-what-we-can-learn-from-the-mgm-breach/

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

/

October 3, 2024

/

Cloud

Introducing real-time multi-cloud detection & response powered by AI

Default blog imageDefault blog image

We are delighted to announce the general availability of Microsoft Azure support for Darktrace / CLOUD, enabling real-time cloud detection and response across dynamic multi-cloud environments. Built on Self-Learning AI, Darktrace / CLOUD leverages Microsoft’s new virtual network flow logs (VNet flow) to offer an agentless-first approach that dramatically simplifies detection and response within Azure, unifying cloud-native security with Darktrace’s innovative ActiveAI Security Platform.

As organizations increasingly adopt multi-cloud architectures, the need for advanced, real-time threat detection and response is critical to keep pace with evolving cloud threats. Security teams face significant challenges, including increased complexity, limited visibility, and siloed tools. The dynamic nature of multi-cloud environments introduces ever-changing blind spots, while traditional security tools struggle to provide real-time insights, often offering static snapshots of risk. Additionally, cloud security teams frequently operate in isolation from SOC teams, leading to fragmented visibility and delayed responses. This lack of coordination, especially in hybrid environments, hinders effective threat detection and response. Compounding these challenges, current security solutions are split between agent-based and agentless approaches, with agentless solutions often lacking real-time awareness and agent-based options adding complexity and scalability concerns. Darktrace / CLOUD helps to solve these challenges with real-time detection and response designed specifically for dynamic cloud environments like Azure and AWS.

Pioneering AI-led real-time cloud detection & response

Darktrace has been at the forefront of real-time detection and response for over a decade, continually pushing the boundaries of AI-driven cybersecurity. Our Self-Learning AI uniquely positions Darktrace with the ability to automatically understand and instantly adapt to changing cloud environments. This is critical in today’s landscape, where cloud infrastructures are highly dynamic and ever-changing.  

Built on years of market-leading network visibility, Darktrace / CLOUD understands ‘normal’ for your unique business across clouds and networks to instantly reveal known, unknown, and novel cloud threats with confidence. Darktrace Self-Learning AI continuously monitors activity across cloud assets, containers, and users, and correlates it with detailed identity and network context to rapidly detect malicious activity. Platform-native identity and network monitoring capabilities allow Darktrace / CLOUD to deeply understand normal patterns of life for every user and device, enabling instant, precise and proportionate response to abnormal behavior - without business disruption.

Leveraging platform-native Autonomous Response, AI-driven behavioral containment neutralizes malicious activity with surgical accuracy while preventing disruption to cloud infrastructure or services. As malicious behavior escalates, Darktrace correlates thousands of data points to identify and instantly respond to unusual activity by blocking specific connections and enforcing normal behavior.

Figure 1: AI-driven behavioral containment neutralizes malicious activity with surgical accuracy while preventing disruption to cloud infrastructure or services.

Unparalleled agentless visibility into Azure

As a long-term trusted partner of Microsoft, Darktrace leverages Azure VNet flow logs to provide agentless, high-fidelity visibility into cloud environments, ensuring comprehensive monitoring without disrupting workflows. By integrating seamlessly with Azure, Darktrace / CLOUD continues to push the envelope of innovation in cloud security. Our Self-learning AI not only improves the detection of traditional and novel threats, but also enhances real-time response capabilities and demonstrates our commitment to delivering cutting-edge, AI-powered multi-cloud security solutions.

  • Integration with Microsoft Virtual network flow logs for enhanced visibility
    Darktrace / CLOUD integrates seamlessly with Azure to provide agentless, high-fidelity visibility into cloud environments. VNet flow logs capture critical network traffic data, allowing Darktrace to monitor Azure workloads in real time without disrupting existing workflows. This integration significantly reduces deployment time by 95%1 and cloud security operational costs by up to 80%2 compared to traditional agent-based solutions. Organizations benefit from enhanced visibility across dynamic cloud infrastructures, scaling security measures effortlessly while minimizing blind spots, particularly in ephemeral resources or serverless functions.
  • High-fidelity agentless deployment
    Agentless deployment allows security teams to monitor and secure cloud environments without installing software agents on individual workloads. By using cloud-native APIs like AWS VPC flow logs or Azure VNet flow logs, security teams can quickly deploy and scale security measures across dynamic, multi-cloud environments without the complexity and performance overhead of agents. This approach delivers real-time insights, improving incident detection and response while reducing disruptions. For organizations, agentless visibility simplifies cloud security management, lowers operational costs, and minimizes blind spots, especially in ephemeral resources or serverless functions.
  • Real-time visibility into cloud assets and architectures
    With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures. This shared context enhances collaboration and accelerates threat detection and response, especially in complex environments like Kubernetes. Additionally, Cyber AI Analyst automates the investigation process, correlating data across networks, identities, and cloud assets to save security teams valuable time, ensuring continuous protection and efficient cloud migrations.
Figure 2: Real-time visibility into Azure assets and architectures built from network, configuration and identity and access roles.

Unified multi-cloud security at scale

As organizations increasingly adopt multi-cloud strategies, the complexity of managing security across different cloud providers introduces gaps in visibility. Darktrace / CLOUD simplifies this by offering agentless, real-time monitoring across multi-cloud environments. Building on our innovative approach to securing AWS environments, our customers can now take full advantage of robust real-time detection and response capabilities for Azure. Darktrace is one of the first vendors to leverage Microsoft’s virtual network flow logs to provide agentless deployment in Azure, enabling unparalleled visibility without the need for installing agents. In addition, Darktrace / CLOUD offers automated Cloud Security Posture Management (CSPM) that continuously assesses cloud configurations against industry standards.  Security teams can identify and prioritize misconfigurations, vulnerabilities, and policy violations in real-time. These capabilities give security teams a complete, live understanding of their cloud environments and help them focus their limited time and resources where they are needed most.

This approach offers seamless integration into existing workflows, reducing configuration efforts and enabling fast, flexible deployment across cloud environments. By extending its capabilities across multiple clouds, Darktrace / CLOUD ensures that no blind spots are left uncovered, providing holistic, multi-cloud security that scales effortlessly with your cloud infrastructure. diagrams, visualizes cloud assets, and prioritizes risks across cloud environments.

Figure 3: Unified view of AWS and Azure cloud posture and compliance over time.

The future of cloud security: Real-time defense in an unpredictable world

Darktrace / CLOUD’s support for Microsoft Azure, powered by Self-Learning AI and agentless deployment, sets a new standard in multi-cloud security. With real-time detection and autonomous response, organizations can confidently secure their Azure environments, leveraging innovation to stay ahead of the constantly evolving threat landscape. By combining Azure VNet flow logs with Darktrace’s AI-driven platform, we can provide customers with a unified, intelligent solution that transforms how security is managed across the cloud.

Learn More:

References

1. Based on internal research and customer data

2. Based on internal research

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI