Blog
/
Cloud
/
July 31, 2024

CDR is just NDR for the Cloud... Right?

As cloud adoption surges, the need for scalable, cloud-native security is paramount. This blog explores whether Cloud Detection and Response (CDR) is merely Network Detection and Response (NDR) tailored for the cloud, highlighting the unique challenges and essential solutions SOC teams require to secure dynamic cloud environments effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jul 2024

The need for scalable cloud-native security

The cybersecurity landscape is undergoing a rapid transformation driven by the accelerated adoption of cloud computing, compelling organizations to reevaluate their security strategies. According to Forrester’s Infrastructure Cloud Survey, 2023, cloud decision-makers who are moving to a cloud computing infrastructure estimated they have already moved 39% of their application portfolio to the cloud and intend to move another 53% in the next two years [1].

This explosive growth underscores not only the increased dependency on cloud services, but also the evolving sophistication of cyber threats targeting these platforms, and the critical need for dedicated security measures tailored to cloud infrastructures — thereby making cloud security a pivotal focus for Security Operations Center (SOC) teams.

As organizations increasingly migrate to cloud environments and their reliance on cloud infrastructures deepens, they encounter new security challenges that require reevaluating their security strategies. Traditional measures like Network Detection and Response (NDR) are being reassessed in favor of more dynamic, scalable cloud-native solutions.

However, can we truly say that cloud detection and response (CDR) is fundamentally different? Or is it simply an evolution of NDR tailored for the cloud?

Cloud Detection and Response (CDR) vs Network Detection and Response (NDR)

Cloud Detection and Response (CDR) has emerged as a pivotal technology in the race against threat actors targeting cloud assets. CDR is typically centered around the same foundational principles as NDR. As such, NDR providers are well placed to provide these capabilities within dynamic cloud environments – particularly those providers that are built upon the foundation of understanding your business, its digital footprint, and leveraging that understanding to detect subtle deviations and highlighting anomalies as opposed to pre training or relying on rules and signatures.

However, there are unique challenges within cloud environments that require a wider, richer, context-aware approach.

Why SOC Teams Care

Widespread UseThe shift towards cloud services is no longer a trend but a standard practice across industries. Organizations increasingly rely on cloud infrastructures for essential operations across IaaS, PaaS, and SaaS platforms. According to Gartner, worldwide end-user spending on public cloud services is forecast to grow 20.4% to total $678.8 billion in 2024, up from $563.6 billion in 2023 [2]. This widespread adoption necessitates a security approach that can operate seamlessly across varied cloud environments, addressing both the scalability and the agility that these platforms offer.

Sophisticated AttacksCyber threats have evolved in sophistication, specifically targeting cloud platforms due to their growing prevalence. Attackers exploit the dynamic nature of cloud services, where traditional security measures often fall short. The cloud has emerged as a major target for threat actors who want to control access to, manipulate, and steal that data. This makes cloud resources a bigger target than ever for attackers. According to the IBM Cost of a Data Breach 2023 report, 82% of breaches involved data stored in the cloud [3]. Examples include data breaches initiated through misconfigured storage instances or through the exploitation of incomplete data deletion processes, highlighting the need for cloud-specific security responses.

Dynamic EnvironmentsCloud environments are inherently dynamic, characterized by the rapid provisioning and de-provisioning of resources, this fluidity presents a significant challenge for maintaining continuous security oversight, organizations need to be able to see what individual assets in the cloud look like at any given moment, who or what can access those, but also to be able to detect and respond to changes in real time. Unlike traditional infrastructure, detection and response in the cloud is challenging because of the ephemeral nature of some cloud assets and the velocity and volume of new app deployment – traditional signature-based detections will often struggle to work with such data.

What SOC Teams Need

Centralized VisibilityEffective security management requires a comprehensive, unified view spanning all operational environments including multi-cloud platforms and on-premises datacenters. Furthermore, in today's complex IT landscape, where organizations operate across both on-premises and various cloud environments, the need for centralized visibility becomes paramount. This comprehensive oversight is crucial for detecting anomalies and potential threats in real time, allowing SOC teams to manage security from a single source of truth, despite the dispersed nature of cloud assets and the heterogeneity of on-premises resources. By integrating these views, organizations can ensure a seamless security posture that encompasses all operational environments, enhancing their ability to respond swiftly to incidents and reduce security gaps.

AutomationGiven the vast scale and complexity of cloud operations, automation in detection and response processes is indispensable. Automated security solutions can instantly respond to threats, or adjust permissions across the cloud, enhancing both the efficiency and effectiveness of security measures.

Containment and RemediationThe capability for swift containment and remediation of security incidents is vital to minimize their impact on business operations. Automated response mechanisms that can isolate affected systems, revoke access, or reroute traffic until the threat is neutralized are essential components of modern CDR solutions.

Unpacking the Essentials: What Sets CDR Apart from NDR

While CDR and NDR share similar goals of threat mitigation, the context within cloud environments brings additional complexities:

Who: The identification of user roles and access patterns in cloud environments is crucial for detecting insider threats or compromised accounts. For example, an account behaving irregularly or accessing unusual data points may indicate a security breach.

What: Understanding what resources are deployed in the cloud (such as VMs, containers, and serverless functions) and the types of data they handle helps prioritize security efforts. Protecting data with varying sensitivity levels requires different security protocols.

Where: The geographic distribution of cloud datacenters affects regulatory compliance and data sovereignty. Security measures must consider these factors to ensure that data storage and processing comply with local laws and regulations.

How: Monitoring the configuration and usage of cloud services helps in identifying misconfigurations and anomalous usage patterns, which are common vectors for attacks. Tools that can automatically scan and rectify configurations in real time are particularly valuable in maintaining cloud security.

Key takeaways and benefits of CDR

As cloud adoption continues to surge, the strategic importance of CDR becomes increasingly evident. However, NDR vendors are well-positioned to provide these capabilities, especially those who deeply understand customer environments by learning the pattern of life of resources rather than relying on static rules and signatures.

Cloud environments, at their core, are still comprised of networks for communication. Interactions between cloud resources need to be monitored in real time, and access to these resources needs to be tracked and managed. As the cloud changes dynamically, the understanding and visualization of what is deployed and where needs to be updated quickly. Above all effective and proportional cloud-native response needs to be provided to mitigate threats and avoid business disruption.

Moreover, the ideal solutions will not only monitor network interactions but also bring in cloud contextual awareness. By combining these insights, SOC teams can gain a deeper understanding of permissions, assess risk vulnerabilities, and integrate all these elements into a single, cohesive platform. Importantly, SOC teams need to go beyond detection and response to actively mitigate potential misconfigurations and stay preventative. After all, proactive security is much better than reactive. By leveraging such comprehensive solutions, SOC teams can better equip themselves to tackle the modern cybersecurity landscape, ensuring robust, responsive, and adaptable defenses.

Learn more about Darktrace / CLOUD

Darktrace / CLOUD is intelligent cloud security powered by Self-Learning AI that delivers continuous, context-aware visibility and monitoring of cloud assets to unlock real-time detection and response​,​ and proactive cloud risk management. Read more about our cloud security solution here.

References

[1]  Gartner Forecasts Worldwide Public Cloud End-User Spending to Surpass $675 Billion in 2024

[2]  Public Cloud Market Insights, 2023 | Forrester

[3]  IBM Cost of a Data Breach 2023 Report

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Cloud

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI