Blog
/
/
April 20, 2022

Email Compromise To Mass Phishing Campaign

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Apr 2022
Read Darktrace's in-depth analysis on the shift from business email compromise to mass phishing campaigns. Gain the knowledge to safeguard your business.

It is common for attackers to send large volumes of malicious emails from the email accounts which they compromise. Before carrying out this mass-mailing activity, there are predictable, preparatory steps which attackers take, such as registering mass-mailing applications and creating new inbox rules. In this blog, we will provide details of an attack observed in February 2022 in which a threat actor conducted a successful mass-mailing attack at a financial company based in Africa.

Attack summary

In February 2022, an attacker attempted to infiltrate the email environment of a financial services company based in Africa. At the beginning of February, the attacker likely gained a foothold in the company’s email environment by tricking an internal user into entering the credentials of their corporate email account into a phishing page. Over the following week, the attacker used the compromised account credentials to conduct a variety of activities, such as registering a mass-mailing application and creating a new inbox rule.

After taking these preparatory steps, the attacker went on to send out large volumes of phishing emails from the internal user’s email account. The attacker consequently obtained the credentials of several further internal corporate accounts. They used the credentials of one of these accounts to carry out similar preparatory steps (registering a mass-mailing application and creating a new inbox rule). After taking these steps, the attacker again sent large volumes of phishing emails from the account. At this point, the customer requested assistance from Darktrace’s SOC to aid investigation, and the intrusion was consequently contained by the company.

Since the attacker carried out their activities using a VPN and an Amazon cloud service, the endpoints from which the activities took place did not serve as particularly helpful indicators of an attack. However, prior to sending out phishing emails from internal users’ accounts, the attacker did carry out other predictable, preparatory activities. One of the main goals of this blog is to highlight that these behaviors serve as valuable signs of preparation for mass-mailing activity.

Attack timeline

Figure 1: Timeline of the intrusion

On February 3, the attacker sent a phishing email to the corporate account of an employee. The email was sent from the corporate account of an employee at a company with business ties to the victim enterprise. It is likely that the attacker had compromised this account prior to sending the phishing email from it. The phishing email in question claimed to be an overdue payment reminder. Within the email, there was a link hidden behind the display text “view invoice”. The hostname of the phishing link’s URL was a subdomain of questionpro[.]eu — an online survey platform. The page referred to by the URL was a fake Microsoft Outlook login page.

Figure 2: Destination of phishing link within the email sent by the attacker

Antigena Email, Darktrace’s email security solution, identified the highly unusual linguistic structure of the email, given its understanding of ‘normal’ for that sender. This was reflected in an inducement shift score of 100. However, in this case, the original URL of the phishing link was rewritten by Mimecast’s URL protection service in a way which made the full URL impossible to extract. Consequently, Antigena Email did not know what the original URL of the link was. Since the link was rewritten by Mimecast’s URL protection service, the email’s recipient will have received a warning notification in their browser upon clicking the link. It seems that the recipient ignored the warning, and consequently divulged their email account credentials to the attacker.

For Antigena Email to hold an email from a user’s mailbox, it must judge with high confidence that the email is malicious. In cases where the email contains no suspicious attachments or links, it is difficult for Antigena Email to obtain such high degrees of confidence, unless the email displays clear payload-independent malicious indicators, such as indicators of spoofing or indicators of extortion. In this case, the email, as seen by Antigena Email, didn’t contain any suspicious links or attachments (since Mimecast had rewritten the suspicious link) and the email didn’t contain any indicators of spoofing or extortion.

Figure 3: The email’s high inducement shift score highlights that the email’s linguistic content and structure were unusual for the email’s sender

Shortly after receiving the email, the internal user’s corporate device was observed making SSL connections to the questionpro[.]eu phishing endpoint. It is likely that the user divulged their email account credentials during these connections.

Figure 4: The above screenshot — obtained from Advanced Search — depicts the connections made by the account owner’s device on February 3

Between February 3 and February 7, the attacker logged into the user’s email account several times. Since these logins were carried out using a common VPN service, they were not identified as particularly unusual by Darktrace. However, during their login sessions, the attacker exhibited behavior which was highly unusual for the email account’s owner. The attacker was observed creating an inbox rule called “ _ ” on the user’s email account,[1] as well as registering and granting permissions to a mass-mailing application called Newsletter Software SuperMailer. These steps were taken by the attacker in preparation for their subsequent mass-mailing activity.

On February 7, the attacker sent out phishing emails from the user’s account. The emails were sent to hundreds of internal and external mailboxes. The email claimed to be an overdue payment reminder and it contained a questionpro[.]eu link hidden behind the display text “view invoice”. It is likely that the inbox rule created by the attacker caused all responses to this phishing email to be deleted. Attackers regularly create inbox rules on the email accounts which they compromise to ensure that responses to the malicious emails which they distribute are hidden from the accounts’ owners.[2]

Since Antigena Email does not have visibility of internal-to-internal emails, the phishing email was delivered fully weaponized to hundreds of internal mailboxes. On February 7, after the phishing email was sent from the compromised internal account, more than twenty internal devices were observed making SSL connections to the relevant questionpro[.]eu endpoint, indicating that many internal users had clicked the phishing link and possibly revealed their account credentials to the attacker.

Figure 5: The above screenshot — obtained from Advanced Search — depicts the large volume of connections made by internal devices to the phishing endpoint

Over the next five days, the attacker was observed logging into the corporate email accounts of at least six internal users. These logins were carried out from the same VPN endpoints as the attacker’s original logins. On February 11, the attacker was observed creating an inbox rule named “ , ” on one of these accounts. Shortly after, the attacker went on to register and grant permissions to the same mass-mailing application, Newsletter Software SuperMailer. As with the other account, these steps were taken by the attacker in preparation for subsequent mass-mailing activity.

Figure 6: The above screenshot — obtained from Advanced Search — outlines all of the actions involving the mass-mailing application that were taken by the attacker (accounts have been redacted)

On February 11, shortly after 08:30 (UTC), the attacker widely distributed a phishing email from this second user’s account. The phishing email was distributed to hundreds of internal and external mailboxes. Unlike the other phishing emails used by the attacker, this one claimed to be a purchase order notification, and it contained an HTML file named PurchaseOrder.html. Within this file, there was a link to a suspicious page on the public relations (PR) news site, everything-pr[.]com. After the phishing email was sent from the compromised internal account, more than twenty internal devices were observed making SSL connections to the relevant everything-pr[.]com endpoint, indicating that many internal users had opened the malicious attachment.

Figure 7: The above screenshot — obtained from Advanced Search — depicts the connections made by internal devices to the endpoint referenced in the malicious attachment

On February 11, the customer submitted an Ask the Expert (ATE) request to Darktrace’s SOC team. The guidance provided by the SOC helped the security team to contain the intrusion. The attacker managed to maintain a presence within the organization’s email environment for eight days. During these eight days, the attacker sent out large volumes of phishing emails from two corporate accounts. Before sending out these phishing emails, the attacker carried out predictable, preparatory actions. These actions included registering a mass-mailing application with Azure AD and creating an inbox rule.

Darktrace guidance

There are many learning points for this particular intrusion. First, it is important to be mindful of signs of preparation for malicious mass-mailing activity. After an attacker compromises an email account, there are several actions which they will likely perform before they send out large volumes of malicious emails. For example, they may create an inbox rule on the account, and they may register a mass-mailing application with Azure AD. The Darktrace models SaaS / Compliance / New Email Rule and SaaS / Admin / OAuth Permission Grant are designed to pick up on these behaviors.

Second, in cases where an attacker succeeds in sending out phishing emails from an internal, corporate account, it is advised that customers make use of Darktrace’s Advanced Search to identify users that may have divulged account credentials to the attacker. The phishing email sent from the compromised account will likely contain a suspicious link. Once the hostname of the link has been identified, it is possible to ask Advanced Search to display all HTTP or SSL connections to the host in question. If the hostname is www.example.com, you can get Advanced Search to display all SSL connections to the host by using the Advanced Search query, @fields.server_name:"www.example.com", and you can get Advanced Search to display all HTTP connections to the host by using the query, @fields.host:"www.example.com".

Third, it is advised that customers make use of Darktrace’s ‘watched domains’ feature[3] in cases where an attacker succeeds in sending out malicious emails from the accounts they compromise. If a hostname is added to the watched domains list, then a model named Compromise / Watched Domain will breach whenever an internal device is observed connecting to it. If Antigena Network is configured, then observed attempts to connect to the relevant host will be blocked if the hostname is added to the watched domains list with the ‘flag for Antigena’ toggle switched on. If an attacker succeeds in sending out a malicious email from an internal, corporate account, it is advised that customers add hostnames of phishing links within the email to the watched domains list and enable the Antigena flag. Doing so will cause Darktrace to identify and thwart any attempts to connect to the relevant phishing endpoints.

Figure 8: The above screenshot — obtained from the Model Editor — shows that Antigena Network prevented ten internal devices from connecting to phishing endpoints after the relevant phishing hostnames were added to the watched domains list on February 11

For Darktrace customers who want to find out more about phishing detection, refer here for an exclusive supplement to this blog.

MITRE ATT&CK techniques observed

Thanks to Paul Jennings for his contributions.

Footnotes

1. https://docs.microsoft.com/en-us/powershell/module/exchange/new-inboxrule?view=exchange-ps

2. https://www.fireeye.com/current-threats/threat-intelligence-reports/rpt-fin4.html

3. https://customerportal.darktrace.com/product-guides/main/watched-domains

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Shuh Chin Goh
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 19, 2025

Darktrace Releases Annual 2024 Threat Insights

Default blog imageDefault blog image

Introduction: Darktrace’s threat research

Defenders must understand the threat landscape in order to protect against it. They can do that with threat intelligence.

Darktrace approaches threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, it uses a strategy that is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.

For Darktrace analysts and researchers, the incidents detected by the AI solution mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, the Darktrace Threat Research team has highlighted numerous threats, including zero-day, n-day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.

In 2024, the Threat Research team observed major trends around vulnerabilities in internet-facing systems, new and re-emerging ransomware strains, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.

Multiple campaigns target vulnerabilities in internet-facing systems

It is increasingly common for threat actors to identify and exploit newly discovered vulnerabilities in widely used services and applications, and in some cases, these vulnerability exploitations occur within hours of disclosure.

In 2024, the most significant campaigns observed involved the ongoing exploitation of zero-day and n-day vulnerabilities in edge and perimeter network technologies. In fact, in the first half of the year, 40% of all identified campaign activity came from the exploitation of internet-facing devices. Some of the most common exploitations involved Ivanti Connect Secure (CS) and Ivanti Policy Secure (PS) appliances, Palo Alto Network (PAN-OS) firewall devices, and Fortinet appliances.

Darktrace helps security teams identify suspicious behavior quickly, as demonstrated with the critical vulnerability in PAN-OS firewall devices. The vulnerability was publicly disclosed on April 11, 2024, yet with anomaly-based detection, Darktrace’s Threat Research team was able to identify a range of suspicious behavior related to exploitation of this vulnerability, including command-and-control (C2) connectivity, data exfiltration, and brute-forcing activity, as early as March 26.

That means that Darktrace and our Threat Research team detected this Common Vulnerabilities and Exposure (CVE) exploitation 16 days before the vulnerability was disclosed. Addressing critical vulnerabilities quickly massively benefits security, as teams can reduce their effectiveness by slowing malicious operations and forcing attackers to pursue more costly and time-consuming methods.

Persistent ransomware threats continue to evolve

The continued adoption of the Ransomware-as-a-Service (RaaS) model provides even less experienced threat actors with the tools needed to carry out disruptive attacks, significantly lowering the barrier to entry.

The Threat Research team tracked both novel and re-emerging strains of ransomware across the customer fleet, including Akira, LockBit, and Lynx. Within these ransomware attempts and incidents, there were notable trends in attackers’ techniques: using phishing emails as an attack vector, exploiting legitimate tools to mask C2 communication, and exfiltrating data to cloud storage services.

Read the Annual 2024 Threat Report for the complete list of prominent ransomware actors and their commonly used techniques.

Onslaught of email threats continues

With a majority of attacks originating from email, it is crucial that organizations secure the inboxes and beyond.

Between December 21, 2023, and December 18, 2024, Darktrace / EMAIL detected over 30.4 million phishing emails across the fleet. Of these, 70% successfully bypassed Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks and 55% passed through all other existing layers of customer email security.

The abuse of legitimate services and senders continued to be a significant method for threat actors throughout 2024. By leveraging trusted platforms and domains, malicious actors can bypass traditional security measures and increase the likelihood of their phishing attempts being successful.

This past year, there was a substantial use of legitimately authenticated senders and previously established domains, with 96% of phishing emails detected by Darktrace / EMAIL utilizing existing domains rather than registering new ones.

These are not the only types of email attacks we observed. Darktrace detected over 2.7 million emails with multistage payloads.

While most traditional cybersecurity solutions struggle to cover multiple vectors and recognize each stage of complex attacks as part of wider malicious activity, Darktrace can detect and respond across email, identities, network, and cloud.

Conclusion

The Darktrace Threat Research team continues to monitor the ever-evolving threat landscape. Major patterns over the last year have revealed the importance of fast-acting, anomaly-based detection like Darktrace provides.

For example, response speed is essential when campaigns target vulnerabilities in internet-facing systems, and these vulnerabilities can be exploited by attackers within hours of their disclosure if not even before that.

Similarly, anomaly-based detection can identify hard to find threats like ransomware attacks that increasingly use living-off-the-land techniques and legitimate tools to hide malicious activity. A similar pattern can be found in the realm of email security, where attacks are also getting harder to spot, especially as they frequently exploit trusted senders, use redirects via legitimate services, and craft attacks that bypass DMARC and other layers of email security.

As attacks appear with greater complexity, speed, and camouflage, defenders must have timely detection and containment capabilities to handle all emerging threats. These hard-to-spot attacks can be identified and stopped by Darktrace.

Download the full report

Discover the latest threat landscape trends and recommendations from the Darktrace Threat Research team.

Continue reading
About the author
The Darktrace Threat Research Team

Blog

/

OT

/

February 18, 2025

Unifying IT & OT With AI-Led Investigations for Industrial Security

Default blog imageDefault blog image

As industrial environments modernize, IT and OT networks are converging to improve efficiency, but this connectivity also creates new attack paths. Previously isolated OT systems are now linked to IT and cloud assets, making them more accessible to attackers.

While organizations have traditionally relied on air gaps, firewalls, data diodes, and access controls to separate IT and OT, these measures alone aren’t enough. Threat actors often infiltrate IT/Enterprise networks first then exploit segmentation, compromising credentials, or shared IT/OT systems to move laterally, escalate privileges, and ultimately enter the OT network.

To defend against these threats, organizations must first ensure they have complete visibility across IT and OT environments.

Visibility: The first piece of the puzzle

Visibility is the foundation of effective industrial cybersecurity, but it’s only the first step. Without visibility across both IT and OT, security teams risk missing key alerts that indicate a threat targeting OT at their earliest stages.

For Attacks targeting OT, early stage exploits often originate in IT environments, adversaries perform internal reconnaissance among other tactics and procedures but then laterally move into OT first affecting IT devices, servers and workstations within the OT network. If visibility is limited, these threats go undetected. To stay ahead of attackers, organizations need full-spectrum visibility that connects IT and OT security, ensuring no early warning signs are missed.

However, visibility alone isn’t enough. More visibility also means more alerts, this doesn’t just make it harder to separate real threats from routine activity, but bogs down analysts who have to investigate all these alerts to determine their criticality.

Investigations: The real bottleneck

While visibility is essential, it also introduces a new challenge: Alert fatigue. Without the right tools, analysts are often occupied investigating alerts with little to no context, forcing them to manually piece together information and determine if an attack is unfolding. This slows response times and increases the risk of missing critical threats.

Figure 1: Example ICS attack scenario

With siloed visibility across IT and OT each of these events shown above would be individually alerted by a detection engine with little to no context nor correlation. Thus, an analyst would have to try to piece together these events manually. Traditional security tools struggle to keep pace with the sophistication of these threats, resulting in an alarming statistic: less than 10% of alerts are thoroughly vetted, leaving organizations vulnerable to undetected breaches. As a result, incidents inevitably follow.

Darktrace’s Cyber AI Analyst uses AI-led investigations to improve workflows for analysts by automatically correlating alerts wherever they occur across both IT and OT. The multi-layered AI engine identifies high-priority incidents, and provides analysts with clear, actionable insights, reducing noise and highlighting meaningful threats. The AI significantly alleviates workloads, enabling teams to respond faster and more effectively before an attack escalates.

Overcoming organizational challenges across IT and OT

Beyond technical challenges like visibility and alert management, organizational dynamics further complicate IT-OT security efforts. Fundamental differences in priorities, workflows, and risk perspectives create challenges that can lead to misalignment between teams:

Non-transferable practices: IT professionals might assume that cybersecurity practices from IT environments can be directly applied to OT environments. This can lead to issues, as OT systems and workflows may not handle IT security processes as expected. It's crucial to recognize and respect the unique requirements and constraints of OT environments.

Segmented responsibilities: IT and OT teams often operate under separate organizational structures, each with distinct priorities, goals, and workflows. While IT focuses on data security, network integrity, and enterprise applications, OT prioritizes uptime, reliability, and physical processes.

Different risk perspectives: While IT teams focus on preventing cyber threats and regulatory violations, OT teams prioritize uptime and operational reliability making them drawn towards asset inventory tools that provide no threat detection capability.

Result: A combination of disparate and ineffective tools and misaligned teams can make any progress toward risk reduction at an organization seem impossible. The right tools should be able to both free up time for collaboration and prompt better communication between IT and OT teams where it is needed. However, different size operations structure their IT and OT teams differently which impacts the priorities for each team.

In real-world scenarios, small IT teams struggle to manage security across both IT and OT, while larger organizations with OT security teams face alert fatigue and numerous false positives slowing down investigations and hindering effective communication with the IT security teams.

By unifying visibility and investigations, Darktrace / OT helps organizations of all sizes detect threats earlier, streamline workflows, and enhance security across both IT and OT environments. The following examples illustrate how AI-driven investigations can transform security operations, improving detection, investigation, and response.

Before and after AI-led investigation

Before: Small manufacturing company

At a small manufacturing company, a 1-3 person IT team juggles everything from email security to network troubleshooting. An analyst might see unusual traffic through the firewall:

  • Unusual repeated outbound traffic from an IP within their OT network destined to an unidentifiable external IP.

With no dedicated OT security tools and limited visibility into the industrial network, they don’t know what the internal device in question is, if it is beaconing to a malicious external IP, and what it may be doing to other devices within the OT network. Without a centralized dashboard, they must manually check logs, ask operators about changes, and hunt for anomalies across different systems.

After a day of investigation, they concluded the traffic was not to be expected activity. They stop production within their smaller OT network, update their firewall rules and factory reset all OT devices and systems within the blast radius of the IP device in question.

After: Faster, automated response with Cyber AI Analyst

With Darktrace / OT and Cyber AI Analyst, the IT team moves from reactive, manual investigations to proactive, automated threat detection:

  • Cyber AI Analyst connects alerts across their IT and OT infrastructure temporally mapping them to attack frameworks and provides contextual analysis of how alerts are linked, revealing in real time attackers attempting lateral movement from IT to OT.
  • A human-readable incident report explains the full scope of the incident, eliminating hours of manual investigation.
  • The team is faster to triage as they are led directly to prioritized high criticality alerts, now capable of responding immediately instead of wasting valuable time hunting for answers.

By reducing noise, providing context, and automating investigations, Cyber AI Analyst transforms OT security, enabling small IT teams to detect, understand, and respond to threats—without deep OT cybersecurity expertise.

Before: Large critical infrastructure organization

In large critical infrastructure operations, OT and IT teams work in separate silos. The OT security team needs to quickly assess and prioritize alerts, but their system floods them with notifications:

  • Multiple new device connected to the ICS network alerts
  • Multiple failed logins to HMI detected
  • Multiple Unusual Modbus/TCP commands detected
  • Repeated outbound OT traffic to IT destinations

At first glance, these alerts seem important, but without context, it’s unclear whether they indicate a routine error, a misconfiguration, or an active cyber-attack. They might ask:

  • Are the failed logins just a mistake, or a brute-force attempt?
  • Is the outbound traffic part of a scheduled update, or data exfiltration?

Without correlation across events, the engineer must manually investigate each one—checking logs, cross-referencing network activity, and contacting operators—wasting valuable time. Meanwhile, if it’s a coordinated attack, the adversary may already be disrupting operations.

After: A new workflow with Cyber AI Analyst

With Cyber AI Analyst, the OT security team gets clear, automated correlation of security events, making investigations faster and more efficient:

  • Automated correlation of OT threats: Instead of isolated alerts, Cyber AI Analyst stitches together related events, providing a single, high-confidence incident report that highlights key details.
  • Faster time to meaning: The system connects anomalous behaviors (e.g., failed logins, unusual traffic from an HMI, and unauthorized PLC modifications) into a cohesive narrative, eliminating hours of manual log analysis.
  • Prioritized and actionable alerts: OT security receives clear, ranked incidents, immediately highlighting what matters most.
  • Rapid threat understanding: Security teams know within minutes whether an event is a misconfiguration or a cyber-attack, allowing for faster containment.

With Cyber AI Analyst, large organizations cut through alert noise, accelerate investigations, and detect threats faster—without disrupting OT operations.

An AI-led approach to industrial cybersecurity

Security vendors with a primary focus on IT may lack insight into OT threats. Even OT-focused vendors have limited visibility into IT device exploitation within OT networks, leading to failed ability to detect early indicators of compromise. A comprehensive solution must account for the unique characteristics of various OT environments.

In a world where industrial security is no longer just about protecting OT but securing the entire digital-physical ecosystem as it interacts with the OT network, Darktrace / OT is an AI-driven solution that unifies visibility across IT, IoT and OT, Cloud into one cohesive defense strategy.

Whether an attack originates from an external breach, an insider threat, a supply chain compromise, in the Cloud, OT, or IT domains Cyber AI Analyst ensures that security teams see the full picture - before disruption occurs.

Learn more about Darktrace / OT 

  • Unify IT and OT security under a single platform, ensuring seamless communication and protection for all interconnected devices.
  • Maintain uptime with AI-driven threat containment, stopping attacks without disrupting production.
  • Mitigate risks with or without patches, leveraging MITRE mitigations to reduce attack opportunities.

Download the solution brief to see how Darktrace secures critical infrastructure.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI