Blog
/
Network
/
September 18, 2024

FortiClient EMS Exploited: Attack Chain & Post Exploitation Tactics

Read about the methods used to exploit FortiClient EMS and the critical post-exploitation tactics that affect cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Sep 2024

Cyber attacks on internet-facing systems

In the first half of 2024, the Darktrace Threat Research team observed multiple campaigns of threat actors targeting vulnerabilities in internet-facing systems, including Ivanti CS/PS appliances, Palo Alto firewall devices, and TeamCity on-premises.

These systems, which are exposed to the internet, are often targeted by threat actors to gain initial access to a network. They are constantly being scanned for vulnerabilities, known or unknown, by opportunistic actors hoping to exploit gaps in security. Unfortunately, this exposure remains a significant blind spot for many security teams, as monitoring edge infrastructure can be particularly challenging due to its distributed nature and the sheer volume of external traffic it processes.

In this blog, we discuss a vulnerability that was exploited in Fortinet’s FortiClient Endpoint Management Server (EMS) and the post-exploitation activity that Darktrace observed across multiple customer environments.

What is FortiClient EMS?

FortiClient is typically used for endpoint security, providing features such as virtual private networks (VPN), malware protection, and web filtering. The FortiClient EMS is a centralized platform used by administrators to enforce security policies and manage endpoint compliance. As endpoints are remote and distributed across various locations, the EMS needs to be accessible over the internet.

However, being exposed to the internet presents significant security risks, and exploiting vulnerabilities in the system may give an attacker unauthorized access. From there, they could conduct further malicious activities such as reconnaissance, establishing command-and-control (C2), moving laterally across the network, and accessing sensitive data.

CVE-2023-48788

CVE-2023-48788 is a critical SQL injection vulnerability in FortiClient EMS that can allow an attacker to gain unauthorized access to the system. It stems from improper neutralization of special elements used in SQL commands, which allows attackers to exploit the system through specially crafted requests, potentially leading to Remote Code Execution (RCE) [1]. This critical vulnerability was given a CVSS score of 9.8 and can be exploited without authentication.

The affected versions of FortiClient EMS include:

  • FortiClient EMS 7.2.0 to 7.2.2 (fixed in 7.2.3)
  • FortiClient EMS 7.0.1 to 7.0.10 (fixed in 7.0.11)

The vulnerability was publicly disclosed on March 12, 2024, and an exploit proof of concept was released by Horizon3.ai on March 21 [2]. Starting from March 24, almost two weeks after the initial disclosure, Darktrace began to observe at least six instances where the FortiClient EMS vulnerability had likely been exploited on customer networks. Seemingly exploited devices in multiple customer environments were observed performing anomalous activities, including the installation of Remote Monitoring and Management (RMM) tools, which was also reported by other security vendors around the same time [3].

Darktrace’s Coverage

Initial Access

To understand how the vulnerability can be exploited to gain initial access, we first need to explain some components of the FortiClient EMS:

  • The service FmcDaemon.exe is used for communication between the EMS and enrolled endpoint clients. It listens on port 8013 for incoming client connections.
  • Incoming requests are then sent to FCTDas.exe, which translates requests from other server components into SQL requests. This service interacts with the Microsoft SQL database.
  • Endpoint clients communicate with the FmcDaemon on the server on port 8013 by default.

Therefore, an SQL injection attack can be performed by crafting a malicious payload and sending it over port 8013 to the server. To carry out RCE, an attacker may send further SQL statements to enable and use the xp_cmdshell functionality of the Microsoft SQL server [2].

Shortly before post-exploitation activity began, Darktrace had observed incoming connections to some of the FortiClient EMS devices over port 8013 from the external IPs 77.246.103[.]110, 88.130.150[.]101, and 45.155.141[.]219. This likely represented the threat actors sending an SQL injection payload over port 8013 to the EMS device to validate the exploit.

Establish C2

After exploiting the vulnerability and gaining access to an EMS device on one customer network, two additional devices were seen with HTTP POST requests to 77.246.103[.]110 and 212.113.106[.]100 with a new PowerShell user agent.

Interestingly, the IP 212.113.106[.]100 has been observed in various other campaigns where threat actors have also targeted internet-facing systems and exploited other vulnerabilities. Open-source intelligence (OSINT) suggests that this indicator of compromise (IoC) is related to the Sliver C2 framework and has been used by threat actors such as APT28 (Fancy Bear) and APT29 (Cozy Bear) [4].

Unusual file downloads were also observed on four devices, including:

  • “SETUP.MSI” from 212.32.243[.]25 and 89.149.200[.]91 with a cURL user agent
  • “setup.msi” from 212.113.106[.]100 with a Windows Installer user agent
  • “run.zip” from 95.181.173[.]172 with a PowerShell user agent

The .msi files would typically contain the RMM tools Atera or ScreenConnect [5]. By installing RMM tools for C2, attackers can leverage their wide range of functionalities to carry out various tasks, such as file transfers, without the need to install additional tools. As RMM tools are designed to maintain a stable connection to remote systems, they may also allow the attackers to ensure persistent access to the compromised systems.

A scan of the endpoint 95.181.173[.]172 shows various other files such as “RunSchedulerTask.ps1” and “anydesk.exe” being hosted.

Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].
Figure 1: Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].

Shortly after these unusual file downloads, many of the devices were also seen with usage of RMM tools such as Splashtop, Atera, and AnyDesk. The devices were seen connecting to the following endpoints:

  • *[.]relay.splashtop[.]com
  • agent-api[.]atera[.]com
  • api[.]playanext[.]com with user agent AnyDesk/8.0.9

RMM tools have a wide range of legitimate capabilities that allow IT administrators to remotely manage endpoints. However, they can also be repurposed for malicious activities, allowing threat actors to maintain persistent access to systems, execute commands remotely, and even exfiltrate data. As the use of RMM tools can be legitimate, they offer threat actors a way to perform malicious activities while blending into normal business operations, which could evade detection by human analysts or traditional security tools.

One device was also seen making repeated SSL connections to a self-signed endpoint “azure-documents[.]com” (104.168.140[.]84) and further HTTP POSTs to “serv1[.]api[.]9hits[.]com/we/session” (128.199.207[.]131). Although the contents of these connections were encrypted, they were likely additional infrastructure used for C2 in addition to the RMM tools that were used. Self-signed certificates may also be used by an attacker to encrypt C2 communications.

Internal Reconnaissance

Following the exploit, two of the compromised devices then started to conduct internal reconnaissance activity. The following figure shows a spike in the number of internal connections made by one of the compromised devices on the customer’s environment, which typically indicates a network scan.

Advanced Search results of internal connections made an affected device.
Figure 2: Advanced Search results of internal connections made an affected device.

Reconnaissance tools such as Advanced Port Scanner (“www[.]advanced-port-scanner[.]com”) and Nmap were also seen being used by one of the devices to conduct scanning activities. Nmap is a network scanning tool commonly used by security teams for legitimate purposes like network diagnostics and vulnerability scanning. However, it can also be abused by threat actors to perform network reconnaissance, a technique known as Living off the Land (LotL). This not only reduces the need for custom or external tools but also reduces the risk of exposure, as the use of a legitimate tool in the network is unlikely to raise suspicion.

Privilege Escalation

In another affected customer network, the threat actor’s attempt to escalate their privileges was also observed, as a FortiClient EMS device was seen with an unusually large number of SMB/NTLM login failures, indicative of brute force activity. This attempt was successful, and the device was later seen authenticating with the credential “administrator”.

Figure 3: Advanced Search results of NTLM (top) and SMB (bottom) login failures.

Lateral Movement

After escalating privileges, attempts to move laterally throughout the same network were seen. One device was seen transferring the file “PSEXESVC.exe” to another device over SMB. This file is associated with PsExec, a command-line tool that allows for remote execution on other systems.

The threat actor was also observed leveraging the DCE-RPC protocol to move laterally within the network. Devices were seen with activity such as an increase in new RPC services, unusual requests to the SVCCTL endpoint, and the execution of WMI commands. The DCE-RPC protocol is typically used to facilitate communication between services on different systems and can allow one system to request services or execute commands on another.

These are further examples of LotL techniques used by threat actors exploiting CVE-2023-48788, as PsExec and the DCE-RPC protocol are often also used for legitimate administrative operations.

Accomplish Mission

In most cases, the threat actor’s end goal was not clearly observed. However, Darktrace did detect one instance where an unusually large volume of data had been uploaded to “put[.]io”, a cloud storage service, indicating that the end goal of the threat actor had been to steal potentially sensitive data.

In a recent investigation of a Medusa ransomware incident that took place in July 2024, Darktrace’s Threat Research team found that initial access to the environment had likely been gained through a FortiClient EMS device. An incoming connection from 209.15.71[.]121 over port 8013 was seen, suggesting that CVE-2023-48788 had been exploited. The device had been compromised almost three weeks before the ransomware was actually deployed, eventually resulting in the encryption of files.

Mitigating risk with proactive exposure management and real-time detection

Threat actors have continued to exploit unpatched vulnerabilities in internet-facing systems to gain initial access to a network. This highlights the importance of addressing and patching vulnerabilities as soon as they are disclosed and a fix is released. However, due to the rapid nature of exploitation, this may not always be enough. Furthermore, threat actors may even be exploiting vulnerabilities that are not yet publicly known.

As the end goals for a threat actor can differ – from data exfiltration to deploying ransomware – the post-exploitation behavior can also vary from actor to actor. However, AI security tools such as Darktrace / NETWORK can help identify and alert for post-exploitation behavior based on abnormal activity seen in the network environment.

Despite CVE-2023-48788 having been publicly disclosed and fixed in March, it appears that multiple threat actors, such as the Medusa ransomware group, have continued to exploit the vulnerability on unpatched systems. With new vulnerabilities being disclosed almost every other day, security teams may find it challenging continuously patch their systems.

As such, Darktrace / Proactive Exposure Management could also alleviate the workload of security teams by helping them identify and prioritize the most critical vulnerabilities in their network.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Emily Megan Lim (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

References

[1] https://nvd.nist.gov/vuln/detail/CVE-2023-48788

[2] https://www.horizon3.ai/attack-research/attack-blogs/cve-2023-48788-fortinet-forticlientems-sql-injection-deep-dive/

[3] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[4] https://www.fortinet.com/blog/threat-research/teamcity-intrusion-saga-apt29-suspected-exploiting-cve-2023-42793

[5] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[6] https://urlscan.io/result/3678b9e2-ad61-4719-bcef-b19cadcdd929/

List of IoCs

IoC - Type - Description + Confidence

  • 212.32.243[.]25/SETUP.MSI - URL - Payload
  • 89.149.200[.]9/SETUP.MSI - URL - Payload
  • 212.113.106[.]100/setup.msi - URL - Payload
  • 95.181.173[.]172/run.zip - URL - Payload
  • serv1[.]api[.]9hits[.]com - Domain - Likely C2 endpoint
  • 128.199.207[.]131 - IP - Likely C2 endpoint
  • azure-documents[.]com - Domain - C2 endpoint
  • 104.168.140[.]84 - IP - C2 endpoint
  • 77.246.103[.]110 - IP - Likely C2 endpoint
  • 212.113.106[.]100 - IP - C2 endpoint

Darktrace Model Detections

Anomalous Connection / Callback on Web Facing Device

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Suspicious Self-Signed SSL

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous Server Activity / Server Activity on New Non-Standard Port - External

Compliance / Remote Management Tool On Server

Device / New User Agent

Device / New PowerShell User Agent

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Network Range Scan

Device / Network Scan

Device / RDP Scan

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Multiple SMB Admin Session

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Unusual Admin SMB Session

Device / Increase in New RPC Services

Device / Multiple Lateral Movement Breaches

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Unusual Activity / Successful Admin Brute-Force Activity

User / New Admin Credentials on Server

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

MITRE ATT&CK Mapping

Tactic – ID: Technique

Initial Access – T1190: Exploit Public-Facing Application

Resource Development – T1587.003: Develop Capabilities: Digital Certificates

Resource Development – T1608.003: Stage Capabilities: Install Digital Certificate

Command and Control – T1071.001: Application Layer Protocol: Web Protocols

Command and Control – T1219: Remote Access Software

Execution – T1059.001: Command and Scripting Interpreter: PowerShell

Reconnaissance – T1595: Active Scanning

Reconnaissance – T1590.005: Gather Victim Network Information: IP Addresses

Discovery – T1046: Network Service Discovery

Credential Access – T1110: Brute Force

Defense Evasion,Initial Access,Persistence,Privilege Escalation – T1078: Valid Accounts

Lateral Movement – T1021.002: Remote Services: SMB/Windows Admin Shares

Lateral Movement – T1021.003: Remote Services: Distributed Component Object Model

Execution – T1569.002: System Services: Service Execution

Execution – T1047: Windows Management Instrumentation

Exfiltration – T1041: Exfiltration Over C2 Channel

Exfiltration – T1567.002: Exfiltration Over Web Service: Exfiltration to Cloud Storage

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

February 3, 2026

Darktrace Malware Analysis: Unpacking SnappyBee

darktace malware analysis snappybeeDefault blog imageDefault blog image

Introduction

The aim of this blog is to be an educational resource, documenting how an analyst can perform malware analysis techniques such as unpacking. This blog will demonstrate the malware analysis process against well-known malware, in this case SnappyBee.

SnappyBee (also known as Deed RAT) is a modular backdoor that has been previously attributed to China-linked cyber espionage group Salt Typhoon, also known as Earth Estries [1] [2]. The malware was first publicly documented by TrendMicro in November 2024 as part of their investigation into long running campaigns targeting various industries and governments by China-linked threat groups.

In these campaigns, SnappyBee is deployed post-compromise, after the attacker has already obtained access to a customer's system, and is used to establish long-term persistence as well as deploying further malware such as Cobalt Strike and the Demodex rootkit.

To decrease the chance of detection, SnappyBee uses a custom packing routine. Packing is a common technique used by malware to obscure its true payload by hiding it and then stealthily loading and executing it at runtime. This hinders analysis and helps the malware evade detection, especially during static analysis by both human analysts and anti-malware services.

This blog is a practical guide on how an analyst can unpack and analyze SnappyBee, while also learning the necessary skills to triage other malware samples from advanced threat groups.

First principles

Packing is not a new technique, and threat actors have generally converged on a standard approach. Packed binaries typically feature two main components: the packed data and an unpacking stub, also called a loader, to unpack and run the data.

Typically, malware developers insert a large blob of unreadable data inside an executable, such as in the .rodata section. This data blob is the true payload of the malware, but it has been put through a process such as encryption, compression, or another form of manipulation to render it unreadable. Sometimes, this data blob is instead shipped in a different file, such as a .dat file, or a fake image. When this happens, the main loader has to read this using a syscall, which can be useful for analysis as syscalls can be easily identified, even in heavily obfuscated binaries.

In the main executable, malware developers will typically include an unpacking stub that takes the data blob, performs one or more operations on it, and then triggers its execution. In most samples, the decoded payload data is loaded into a newly allocated memory region, which will then be marked as executable and executed. In other cases, the decoded data is instead dropped into a new executable on disk and run, but this is less common as it increases the likelihood of detection.

Finding the unpacking routine

The first stage of analysis is uncovering the unpacking routine so it can be reverse engineered. There are several ways to approach this, but it is traditionally first triaged via static analysis on the initial stages available to the analyst.

SnappyBee consists of two components that can be analyzed:

  • A Dynamic-link Library (DLL) that acts as a loader, responsible for unpacking the malicious code
  • A data file shipped alongside the DLL, which contains the encrypted malicious code

Additionally, SnappyBee includes a legitimate signed executable that is vulnerable to DLL side-loading. This means that when the executable is run, it will inadvertently load SnappyBee’s DLL instead of the legitimate one it expects. This allows SnappyBee to appear more legitimate to antivirus solutions.

The first stage of analysis is performing static analysis of the DLL. This can be done by opening the DLL within a disassembler such as IDA Pro. Upon opening the DLL, IDA will display the DllMain function, which is the malware’s initial entry point and the first code executed when the DLL is loaded.

The DllMain function
Figure 1: The DllMain function

First, the function checks if the variable fdwReason is set to 1, and exits if it is not. This variable is set by Windows to indicate why the DLL was loaded. According to Microsoft Developer Network (MSDN), a value of 1 corresponds to DLL_PROCESS_ATTACH, meaning “The DLL is being loaded into the virtual address space of the current process as a result of the process starting up or as a result of a call to LoadLibrary” [3]. Since SnappyBee is known to use DLL sideloading for execution, DLL_PROCESS_ATTACH is the expected value when the legitimate executable loads the malicious DLL.

SnappyBee then uses the GetModule and GetProcAddress to dynamically resolve the address of the VirtualProtect in kernel32 and StartServiceCtrlDispatcherW in advapi32. Resolving these dynamically at runtime prevents them from showing up as a static import for the module, which can help evade detection by anti-malware solutions. Different regions of memory have different permissions to control what they can be used for, with the main ones being read, write, and execute. VirtualProtect is a function that changes the permissions of a given memory region.

SnappyBee then uses VirtualProtect to set the memory region containing the code for the StartServiceCtrlDispatcherW function as writable. It then inserts a jump instruction at the start of this function, redirecting the control flow to one of the SnappyBee DLL’s other functions, and then restores the old permissions.

In practice, this means when the legitimate executable calls StartServiceCtrlDispatcherW, it will immediately hand execution back to SnappyBee. Meanwhile, the call stack now appears more legitimate to outside observers such as antimalware solutions.

The hooked-in function then reads the data file that is shipped with SnappyBee and loads it into a new memory allocation. This pattern of loading the file into memory likely means it is responsible for unpacking the next stage.

The start of the unpacking routine that reads in dbindex.dat.
Figure 2: The start of the unpacking routine that reads in dbindex.dat.

SnappyBee then proceeds to decrypt the memory allocation and execute the code.

The memory decryption routine.
Figure 3: The memory decryption routine.

This section may look complex, however it is fairly straight forward. Firstly, it uses memset to zero out a stack variable, which will be used to store the decryption key. It then uses the first 16 bytes of the data file as a decryption key to initialize the context from.

SnappyBee then calls the mbed_tls_arc4_crypt function, which is a function from the mbedtls library. Documentation for this function can be found online and can be referenced to better understand what each of the arguments mean [4].

The documentation for mbedtls_arc4_crypt.
Figure 4: The documentation for mbedtls_arc4_ crypt.

Comparing the decompilation with the documentation, the arguments SnappyBee passes to the function can be decoded as:

  • The context derived from 16-byte key at the start of the data is passed in as the context in the first parameter
  • The file size minus 16 bytes (to account for the key at the start of the file) is the length of the data to be decrypted
  • A pointer to the file contents in memory, plus 16 bytes to skip the key, is used as the input
  • A pointer to a new memory allocation obtained from VirtualAlloc is used as the output

So, putting it all together, it can be concluded that SnappyBee uses the first 16 bytes as the key to decrypt the data that follows , writing the output into the allocated memory region.

SnappyBee then calls VirtualProtect to set the decrypted memory region as Read + Execute, and subsequently executes the code at the memory pointer. This is clearly where the unpacked code containing the next stage will be placed.

Unpacking the malware

Understanding how the unpacking routine works is the first step. The next step is obtaining the actual code, which cannot be achieved through static analysis alone.

There are two viable methods to retrieve the next stage. The first method is implementing the unpacking routine from scratch in a language like Python and running it against the data file.

This is straightforward in this case, as the unpacking routine in relatively simple and would not require much effort to re-implement. However, many unpacking routines are far more complex, which leads to the second method: allowing the malware to unpack itself by debugging it and then capturing the result. This is the approach many analysts take to unpacking, and the following will document this method to unpack SnappyBee.

As SnappyBee is 32-bit Windows malware, debugging can be performed using x86dbg in a Windows sandbox environment to debug SnappyBee. It is essential this sandbox is configured correctly, because any mistake during debugging could result in executing malicious code, which could have serious consequences.

Before debugging, it is necessary to disable the DYNAMIC_BASE flag on the DLL using a tool such as setdllcharacteristics. This will stop ASLR from randomizing the memory addresses each time the malware runs and ensures that it matches the addresses observed during static analysis.

The first place to set a breakpoint is DllMain, as this is the start of the malicious code and the logical place to pause before proceeding. Using IDA, the functions address can be determined; in this case, it is at offset 10002DB0. This can be used in the Goto (CTRL+G) dialog to jump to the offset and place a breakpoint. Note that the “Run to user code” button may need to be pressed if the DLL has not yet been loaded by x32dbg, as it spawns a small process to load the DLL as DLLs cannot be executed directly.

The program can then run until the breakpoint, at which point the program will pause and code recognizable from static analysis can be observed.

Figure 5: The x32dbg dissassembly listing forDllMain.

In the previous section, this function was noted as responsible for setting up a hook, and in the disassembly listing the hook address can be seen being loaded at offset 10002E1C. It is not necessary to go through the whole hooking process, because only the function that gets hooked in needs to be run. This function will not be naturally invoked as the DLL is being loaded directly rather than via sideloading as it expects. To work around this, the Extended Instruction Pointer (EIP) register can be manipulated to point to the start of the hook function instead, which will cause it to run instead of the DllMain function.

To update EIP, the CRTL+G dialog can again be used to jump to the hook function address (10002B50), and then the EIP register can be set to this address by right clicking the first instruction and selecting “Set EIP here”. This will make the hook function code run next.

Figure 6: The start of the hookedin-in function

Once in this function, there are a few addresses where breakpoints should be set in order to inspect the state of the program at critical points in the unpacking process. These are:

-              10002C93, which allocates the memory for the data file and final code

-              10002D2D, which decrypts the memory

-              10002D81, which runs the unpacked code

Setting these can be done by pressing the dot next to the instruction listing, or via the CTRL+G Goto menu.

At the first breakpoint, the call to VirtualAlloc will be executed. The function returns the memory address of the created memory region, which is stored in the EAX register. In this case, the region was allocated at address 00700000.

Figure 7: The result of the VirtualAlloc call.

It is possible to right click the address and press “Follow in dump” to pin the contents of the memory to the lower pane, which makes it easy to monitor the region as the unpacking process continues.

Figure 8: The allocated memory region shown in x32dbg’s dump.

Single-stepping through the application from this point eventually reaches the call to ReadFile, which loads the file into the memory region.

Figure 9: The allocated memory region after the file is read into it, showing high entropy data.

The program can then be allowed to run until the next breakpoint, which after single-stepping will execute the call to mbedtls_arc4_crypt to decrypt the memory. At this point, the data in the dump will have changed.

Figure 10: The same memory region after the decryption is run, showing lower entropy data.

Right-clicking in the dump and selecting "Disassembly” will disassemble the data. This yields valid shell code, indicating that the unpacking succeeded, whereas corrupt or random data would be expected if the unpacking had failed.

Figure 11: The disassembly view of the allocated memory.

Right-clicking and selecting “Follow in memory map” will show the memory allocation under the memory map view. Right-clicking this then provides an option to dump the entire memory block to file.

Figure 12: Saving the allocated memory region.

This dump can then be opened in IDA, enabling further static analysis of the shellcode. Reviewing the shellcode, it becomes clear that it performs another layer of unpacking.

As the debugger is already running, the sample can be allowed to execute up to the final breakpoint that was set on the call to the unpacked shellcode. Stepping into this call will then allow debugging of the new shellcode.

The simplest way to proceed is to single-step through the code, pausing on each call instruction to consider its purpose. Eventually, a call instruction that points to one of the memory regions that were assigned will be reached, which will contain the next layer of unpacked code. Using the same disassembly technique as before, it can be confirmed that this is more unpacked shellcode.

Figure 13: The unpacked shellcode’s call to RDI, which points to more unpacked shellcode. Note this screenshot depicts the 64-bit variant of SnappyBee instead of 32-bit, however the theory is the same.

Once again, this can be dumped out and analyzed further in IDA. In this case, it is the final payload used by the SnappyBee malware.

Conclusion

Unpacking remains one of the most common anti-analysis techniques and is a feature of most sophisticated malware from threat groups. This technique of in-memory decryption reduces the forensic “surface area” of the malware, helping it to evade detection from anti-malware solutions. This blog walks through one such example and provides practical knowledge on how to unpack malware for deeper analysis.

In addition, this blog has detailed several other techniques used by threat actors to evade analysis, such as DLL sideloading to execute code without arising suspicion, dynamic API resolving to bypass static heuristics, and multiple nested stages to make analysis challenging.

Malware such as SnappyBee demonstrates a continued shift towards highly modular and low-friction malware toolkits that can be reused across many intrusions and campaigns. It remains vital for security teams  to maintain the ability to combat the techniques seen in these toolkits when responding to infections.

While the technical details of these techniques are primarily important to analysts, the outcomes of this work directly affect how a Security Operations Centre (SOC) operates at scale. Without the technical capability to reliably unpack and observe these samples, organizations are forced to respond without the full picture.

The techniques demonstrated here help close that gap. This enables security teams to reduce dwell time by understanding the exact mechanisms of a sample earlier, improve detection quality with behavior-based indicators rather than relying on hash-based detections, and increase confidence in response decisions when determining impact.

Credit to Nathaniel Bill (Malware Research Engineer)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

SnappyBee Loader 1 - 25b9fdef3061c7dfea744830774ca0e289dba7c14be85f0d4695d382763b409b

SnappyBee Loader 2 - b2b617e62353a672626c13cc7ad81b27f23f91282aad7a3a0db471d84852a9ac          

SnappyBee Payload - 1a38303fb392ccc5a88d236b4f97ed404a89c1617f34b96ed826e7bb7257e296

References

[1] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[2] https://www.darktrace.com/blog/salty-much-darktraces-view-on-a-recent-salt-typhoon-intrusion

[3] https://learn.microsoft.com/en-us/windows/win32/dlls/dllmain#parameters

[4] https://mbed-tls.readthedocs.io/projects/api/en/v2.28.4/api/file/arc4_8h/#_CPPv418mbedtls_arc4_cryptP20mbedtls_arc4_context6size_tPKhPh

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

/

February 4, 2026

The State of AI Cybersecurity 2026: Unveiling insights from over 1,500 security leaders

The State of AI Cybersecurity 2026Default blog imageDefault blog image

2025 was the year enterprise AI went mainstream. In 2026, it’s made its way into every facet of the organizational structure – transforming workflows, revolutionizing productivity, and creating new value streams. In short, it’s opened up a whole new attack surface.  

At the same time, AI has accelerated the pace of cybersecurity arms race on both sides: adversaries are innovating using the latest AI technologies at their disposal while defenders scramble to outmaneuver them and stay ahead of AI-powered threats.  

That’s why Darktrace publishes this research every year. The State of AI Cybersecurity 2026 provides an annual snapshot of how the AI threat landscape is shifting, where organizations are adopting AI to maximum advantage, and how they are securing AI in the enterprise.

What is the State of AI Cybersecurity 2026?

We surveyed over 1,500 CISOs, IT leaders, administrators, and practitioners from a range of industries and different countries to uncover their attitudes, understanding, and priorities when it comes to AI threats, agents, tools, and operations in 2026. ​

The results show a fast-changing picture, as security leaders race to navigate the challenges and opportunities at play. Since last year, there has been enormous progress towards maturity in areas like AI literacy and confidence in AI-powered defense, while issues around AI governance remain inconclusive.

Let’s look at some of the key findings for 2026.

What’s the impact of AI on the attack surface?

Security leaders are seeing the adoption of AI agents across the workforce, and are increasingly concerned about the security implications.

  • 44% are extremely or very concerned with the security implications of third-party LLMs (like Copilot or ChatGPT)
  • 92% are concerned about the use of AI agents across the workforce and their impact on security

The rapid expansion of generative AI across the enterprise is outpacing the security frameworks designed to govern it. AI systems behave in ways that traditional defenses are not designed to monitor, introducing new risks around data exposure, unauthorized actions, and opaque decision-making as employees embed generative AI and autonomous agents into everyday workflows.  

Their top concerns? Sensitive data exposure ranks top (61%), while regulatory compliance violations are a close second (56%). These risks tend to have the fastest and most material fallout – ranging from fines to reputational harm – and are more likely to materialize in environments where AI governance is still evolving.

What’s the impact of AI on the cyber threat landscape?

AI is now being used to expedite every stage of the attack kill chain – from initial intrusion to privilege escalation and data exfiltration. 

“73% say that AI-powered threats are already having a significant impact on their organization.”

With AI, attackers can launch novel attacks at scale, and this is significantly increasing the number of threats requiring attention by the security team – often to the point of overwhelm.  

Traditional security solutions relying on historical attack data were never designed to handle an environment where attacks continuously evolve, multiply, and optimize at machine speed, so it’s no surprise that 92% agree that AI-powered cyber-threats are forcing them to significantly upgrade their defenses.

How is AI reshaping cybersecurity operations?

Cybersecurity workflows are still in flux as security leaders get used to the integration of AI agents into everyday operations.  

“Generative AI is now playing a role in 77% of security stacks.” But only 35% are using unsupervised machine learning.

AI technologies are diverse, ranging from LLMs to NLP systems, GANs, and unsupervised machine learning, with each type offering specific capabilities and facing particular limitations. The lack of familiarity with the different types of AI used within the security stack may be holding some practitioners back from using these new technologies to their best advantage.  

It also creates a lack of trust between humans and AI systems: only 14% of security professionals allow AI to take independent remediation actions in the SOC with no human in the loop.

Another new trend for this year is a strong preference (85%) for relying on Managed Security Service Providers (MSSPs) for SOC services instead of in-house teams, as organizations aim to secure expert, always-on support without the cost and operational burden of running an internal operation.

What impact is AI having on cybersecurity tools?

“96% of cybersecurity professionals agree that AI can significantly improve the speed and efficiency with which they work.”

The capacity of AI for augmenting security efforts is undisputed. But as vendor AI claims become far-reaching, it falls to security leaders to clarify which AI tools offer true value and can help solve their specific security challenges.  

Security professionals are aligned on the biggest area of impact: 72% agree that AI excels at detecting anomalies thanks to its advanced pattern recognition. This enables it to identify unusual behavior that may signal a threat, even when the specific attack has never been encountered or recorded in existing datasets.  

“When purchasing new security capabilities, 93% prefer ones that are part of a broader platform over individual point products.”

Like last year, the drive towards platform consolidation remains strong. Fewer vendors can mean tighter integrations, less console switching, streamlined management, and stronger cross-domain threat insights. The challenge is finding vendors that perform well across the board.

See the full report for more statistics and insights into how security leaders are responding to the AI landscape in 2026.

Learn more about securing AI in your enterprise.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI