Blog
/
Network
/
September 6, 2021

What Are the Early Signs of a Ransomware Attack?

Discover the early signs of ransomware and how to defend against it. Often attack is the best form of defense with cybersecurity. Learn more here!
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Sep 2021

The deployment of ransomware is the endgame of a cyber-attack. A threat actor must have accomplished several previous steps – including lateral movement and privilege escalation – to reach this final position. The ability to detect and counter the early moves is therefore just as important as detecting the encryption itself.

Attackers are using diverse strategies – such as ‘Living off the Land’ and carefully crafting their command and control (C2) – to blend in with normal network traffic and evade traditional security defenses. The analysis below examines the Tactics, Techniques and Procedures (TTPs) used by many ransomware actors by unpacking a compromise which occurred at a defense contractor in Canada.

Phases of a ransomware attack

Figure 1: Timeline of the attack.

The opening: Initial access to privileged account

The first indicator of compromise was a login on a server with an unusual credential, followed by unusual admin activity. The attacker may have gained access to the username and password in a number of ways, from credential stuffing to buying them on the Dark Web. As the attacker had privileged access from the get-go, there was no need for privilege escalation.

Lateral movement

Two days later, the attacker began to spread from the initial server. The compromised server began to send out unusual Windows Management Instrumentation (WMI) commands.

It began remotely controlling four other devices – authenticating on them with a single admin credential. One of the destinations was a domain controller (DC), another was a backup server.

By using WMI – a common admin tool – for lateral movement, the attacker opted to ‘live off the land’ rather than introduce a new lateral movement tool, aiming to remain unnoticed by the company’s security stack. The unusual use of WMI was picked up by Darktrace and the timings of the unusual WMI connections were pieced together by Cyber AI Analyst.

Models:

  • New or Uncommon WMI Activity
  • AI Analyst / Extensive Chain of Administrative Connections

Establish C2

The four devices then connected to the IP 185.250.151[.]172. Three of them, including the DC and backup server, established SSL beacons to the IP using the dynamic DNS domain goog1e.ezua[.]com.

The C2 endpoints had very little open-source intelligence (OSINT) available, but it seems that a Cobalt Strike-style script had used the endpoint in the past. This suggests complex tooling, as the attacker used dynamic SSL and spoofed Google to mask their beaconing.

Interestingly, through the entirety of the attack, only these three devices used SSL connections for beaconing, while later C2 occurred over unencrypted protocols. It appears these three critical devices were treated differently to the other infected devices on the network.

Models:

  • Immediate breach of Anomalous External Activity from Critical Network Device, then several model breaches involving beaconing and SSL to dynamic DNS. (Domain Controller DynDNS SSL or HTTP was particularly specific to this activity.)

The middle game: Internal reconnaissance and further lateral movement

The attack chain took the form of two cycles of lateral movement, followed by establishing C2 at the newly controlled destinations.

Figure 2: Observed chain of lateral movement and C2.

So, after establishing C2, the DC made WMI requests to 20 further IPs over an extended period. It also scanned 234 IPs via ICMP pings, presumably in an attempt to find more hosts.

Many of these were eventually found with ransom notes, in particular when the targeted devices were hypervisors. The ransomware was likely deployed with remote commands via WMI.

Models:

  • AI Analyst / Suspicious Chain of Administrative Connections (from the initial server to the DC to the hypervisor)
  • AI Analyst / Extensive Suspicious WMI Activity (from the DC)
  • Device / ICMP Address Scan, Scanning of Multiple Devices AI Analyst incident (from the DC)

Further C2

As the second stage of lateral movement stopped, a second stage of unencrypted C2 was seen from five new devices. Each started with GET requests to the IP seen in the SSL C2 (185.250.151[.]172), which used the spoofed hostname google[.]com.

Activity started on each device with HTTP requests for a URI ending in .png, before a more consistent beaconing to the URI /books/. Eventually, the devices made POST requests to the URI /ebooks/?k= (a unique identifier for each device). All this appears to be a way of concealing a C2 beacon in what looks like plausible traffic to Google.

In this way, by encrypting some C2 connections with SSL to a Dynamic DNS domain, while crafting other unencrypted HTTP to look like traffic to google[.]com, the attacker managed to operate undetected by the company’s antivirus tools.

Darktrace identified this anomalous activity and generated a large number of external connectivity model breaches.

Models:

  • Eight breaches of Compromise / HTTP Beaconing to New Endpoint from the affected devices

Accomplish mission: Checkmate

Finally, the attacker deployed ransomware. In the ransom note, they stated that sensitive information had been exfiltrated and would be leaked if the company did not pay.

However, this was a lie. Darktrace confirmed that no data had been exfiltrated, as the C2 communications had sent far too little data. Lying about data exfiltration in order to extort a ransom is a common tactic for attackers, and visibility is crucial to determine whether a threat actor is bluffing.

In addition, Antigena – Darktrace’s Autonomous Response technology – blocked an internal download from one of the servers compromised in the first round of lateral movement, because it was an unusual incoming data volume for the client device. This was most likely the attacker attempting to transfer data in preparation for the end goal, so the block may have prevented this data from being moved for exfiltration.

Figure 3: Antigena model breach.

Figure 4: Device is blocked from SMB communication with the compromised server three seconds later.

Models:

  • Unusual Incoming Data Volume
  • High Volume Server Data Transfer

Unfortunately, Antigena was not active on the majority of the devices involved in the incident. If in active mode, Antigena would have stopped the early stages of this activity, including the unusual administrative logins and beaconing. The customer is now working to fully configure Antigena, so they benefit from 24/7 Autonomous Response.

Cyber AI Analyst investigates

Darktrace’s AI spotted and reported on beaconing from several devices including the DC, which was the highest scoring device for unusual behavior at the time of the activity. It condensed this information into three incidents – ‘Possible SSL Command and Control’, ‘Extensive Suspicious Remote WMI Activity’, and ‘Scanning of Remote Devices’.

Crucially, Cyber AI Analyst not only summarized the admin activity from the DC but also linked it back to the first device through an unusual chain of administrative connections.

Figure 5: Cyber AI Analyst incident showing a suspicious chain of administrative connections linking the first device in the chain of connections to a hypervisor where a ransom note was found via the compromised DC, saving valuable time in the investigation. It also highlights the credential common to all of the lateral movement connections.

Finding lateral movement chains manually is a laborious process well suited to AI. In this case, it enabled the security team to quickly trace back to the device which was the likely source of the attack and find the common credential in the connections.

Play the game like a machine

To get the full picture of a ransomware attack, it is important to look beyond the final encryption to previous phases of the kill chain. In the attack above, the encryption itself did not generate network traffic, so detecting the intrusion at its early stages was vital.

Despite the attacker ‘Living off the Land’ and using WMI with a compromised admin credential, as well as spoofing the common hostname google[.]com for C2 and applying dynamic DNS for SSL connections, Darktrace was able to identify all the stages of the attack and immediately piece them together into a meaningful security narrative. This would have been almost impossible for a human analyst to achieve without labor-intensive checking of the timings of individual connections.

With ransomware infections becoming faster and more frequent, with the threat of offensive AI looming closer and the Dark Web marketplace thriving, with security teams drowning under false positives and no time left on the clock, AI is now an essential part of any security solution. The board is set, the time is ticking, the stakes are higher than ever. Your move.

Thanks to Darktrace analyst Daniel Gentle for his insights on the above threat find.

IoCs:

IoCComment185.250.151[.]172IP address used for both HTTP and SSL C2goog1e.ezua[.]comDynamic DNS Hostname used for SSL C2

Darktrace model detections:

  • AI Analyst models:
  • Extensive Suspicious WMI Activity
  • Suspicious Chain of Administrative Connections
  • Scanning of Multiple Devices
  • Possible SSL Command and Control
  • Meta model:
  • Device / Large Number of model breaches
  • External connectivity models:
  • Anonymous Server Activity / Domain Controller DynDNS SSL or HTTP
  • Compromise / Suspicious TLS Beaconing to Rare External
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL to DynDNS
  • Anomalous Server Activity / External Activity from Critical Network Device
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Suspicious Beaconing Behaviour
  • Compromise / HTTP Beaconing to New Endpoint
  • Internal activity models:
  • Device / New or Uncommon WMI Activity
  • User / New Admin Credentials on Client
  • Device / ICMP Address Scan
  • Anomalous Connection / Unusual Incoming Data Volume
  • Unusual Activity / High Volume Server Data Transfer

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI