Blog
/
Network
/
July 27, 2023

Revealing Outlaw's Returning Features & New Tactics

Darktrace's investigation of the latest Outlaw crypto-mining operation, covering the resurgence of old tactics along with the emergence of new ones.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jul 2023

What is Outlaw Cryptocurrency Mining Operation?

The cybersecurity community has been aware of the threat of Outlaw cryptocurrency mining operation, and its affiliated activities since as early as 2018. Despite its prominence, Outlaw remains largely elusive to researchers and analysts due to its ability to adapt its tactics, procedures, and payloads.

Outlaw gained notoriety in 2018 as security researchers began observing the creation of affiliated botnets.[1][2]  Researchers gave Outlaw  its name based on the English translation of the “Haiduc” tool observed during their initial activity on compromised devices.[3],[4] By 2019, much of the initial Outlaw activity  focused on the targeting of Internet of Things (IoT) devices and other internet facing servers, reportedly focusing operations in China and on Chinese devices.[5],[6]  From the outset, mining operations featured as a core element of botnets created by the group.[7] This initial focus may have been a sign of caution by threat actors or a preliminary means of testing procedures and operation efficacy. Regardless, Outlaw actors inevitably expanded scope, targeting larger organizations and a wider range of internet facing devices across geographic scope.

Following a short period of inactivity, security researchers began to observe new Outlaw activity, showcasing additional capabilities such as the ability to kill existing crypto-mining processes on devices, thereby reclaiming devices already compromised by crypto-jacking. [8],[9]

Latest News on Outlaw

Although the more recently observed incidents of Outlaw did demonstrate some new tactics, many of its procedures remained the same, including its unique bundling of payloads that combine crypto-mining and botnet capabilities. [10] In conjunction, the continued use of mining-specific payloads and growth of affiliated botnets has bolstered the belief that Outlaw actors historically prioritizes financial gain, in lieu of overt political objectives.

Given the tendency for malicious actors to share tools and capabilities, true attribution of threat or threat group is extremely difficult in the wild. As such, a genuine survey of activity from the group across a customer base has not always been possible. Therefore, we will present an updated look into more recent activity associated with Outlaw detected across the Darktrace customer base.  

Darktrace vs Outlaw

Since late 2022, Darktrace has observed a rise in probable cyber incidents involving indicators of compromise (IoCs) associated with Outlaw. Given its continued prevalence and relative dearth of information, it is essential to take a renewed look at the latest campaign activity associated with threats like Outlaw to avoid making erroneous assumptions and to ensure the threat posed is correctly characterized.

While being aware of previous IoCs and tactics known to be employed in previous campaigns will go some way to protecting against future Outlaw attacks, it is paramount for organizations to arm themselves with an autonomous intelligent decision maker that can identify malicious activity, based on recognizing deviations from expected patterns of behavior, and take preventative action to effectively defend against such a versatile threat.

Darktrace’s anomaly-based approach to threat detection means it is uniquely positioned to detect novel campaign activity by recognizing subtle deviations in affected devices’ behavior that would have gone unnoticed by traditional security tools relying on rules, signatures and known IoCs.

Outlaw Attack Overview & Darktrace Coverage

From late 2022 through early 2023, Darktrace identified multiple cyber events involving IP addresses, domains, and payloads associated with Outlaw on customer networks. In this recent re-emergence of campaign activity, Darktrace identified numerous attack vectors and IoCs that had previously been associated with Outlaw, however it also observed significant deviations from previous campaigns.

Returning Features

As outlined in a previous blog, past iterations of Outlaw compromises include four identified, distinct phases:

1. Targeting of internet facing devices via SSH brute-forcing

2. Initiation of crypto-mining operations

3. Download of shell script and/or botnet malware payloads

4. Outgoing external SSH scanning to propagate the botnet

Nearly all affected devices analyzed by Darktrace were tagged as internet facing, as identified in previous campaigns, supporting the notion that Outlaw continues to focus on easily exposed devices. In addition to this, Darktrace observed three other core returning features from previous Outlaw campaigns in affected devices between late 2022 and early 2023:

1. Gzip and/or Script Download

2. Beaconing Activity (Command and Control)

3. Crypto-mining

Gzip and/or Script Download

Darktrace observed numerous devices downloading the Dota malware, a strain that is previously known to have been associated with the Outlaw botnet, as either a gzip file or a shell script from rare external hosts.

In some examples, IP addresses that provided the payload were flagged by open-source intelligence (OSINT) sources as having engaged in widespread SSH brute-forcing activities. While the timing of the payload transfer to the device was not consistent, download of gzip files featured prominently during directly observed or potentially affiliated activity. Moreover, Darktrace detected multiple devices performing HTTP requests for shell scripts (.sh) according to detected connection URIs. Darktrace DETECT was able to identify these anomalous connections due to the rarity of the endpoint, payloads, and connectivity for the devices.

Figure 1: Darktrace Cyber AI Analyst technical details summary from an incident during the analysis timeframe that highlights a breach device retrieving the anomalous shell scripts using wget.

Beaconing Activity – Command and Control (C2) Endpoint

Across all Outlaw activity identified by Darktrace, devices engaged in some form of beaconing behavior, rather than one-off connections to IPs associated with Outlaw. While the use of application protocol was not uniform, repeated connectivity to rare external IP addresses related to Outlaw occurred across many analyzed incidents. Darktrace’s Self-Learning AI understood that this beaconing activity represented devices deviating from their expected patterns of life and was able to bring it to the immediate attention of customer security teams.

Figure 2: Model breach log details showing sustained, repeated connectivity to Outlaw affiliated endpoint over port 443, indicating potential C2 activity.

Crypto-mining

In almost every incident of Outlaw identified across the fleet, Darktrace detected some form of cryptocurrency mining activity. Devices affected by Outlaw were consistently observed making anomalous connections to external endpoints associated with crypto-mining operations. Furthermore, the Minergate protocol appeared consistently across hosts; even when devices did not make direct crypto-mining commands, such hosts attempted connections to external entities that were known to support crypto-mining operations.

Figure 3: Advanced Search results showing a sudden spike in mining activity from a device observed connecting to Outlaw-affiliated IP addresses. Such crypto-mining activity was observed consistently across analyzed incidents.

Is Outlaw Using New Tactics?

While in the past, Outlaw activity was identified through a systematic kill chain, recent investigations conducted by Darktrace show significant deviations from this.

For instance, affected devices do not necessarily follow the previously outlined kill chain directly as they did previously. Instead, Darktrace observed affected devices exhibiting these phases in differing orders, repeating steps, or missing out attack phases entirely.

It is essential to study such variation in the kill chain to learn more about the threat of Outlaw and how threat actors are continuing to use it is varying ways. These discrepancies in kill chain elements are likely impacted by visibility into the networks and devices of Darktrace customers, with some relevant activity falling outside of Darktrace’s purview. This is particularly true for internet-exposed devices and hosts that repeatedly performed the same anomalous activity (such as making Minergate requests). Moreover, some devices involved in Outlaw activity may have already been compromised prior to Darktrace’s visibility into the network. As such, these conclusions must be evaluated with a degree of uncertainty.

SSH Activity

Although external SSH connectivity was apparent in some of the incidents detected by Darktrace, it was not directly related to brute-forcing activity. Affected devices did receive anomalous incoming SSH connections, however, wide ranging SSH failed connectivity following the initiation of mining operations by compromised devices was not readily apparent across analyzed compromises. Connections over port 22 were more frequently associated with beaconing and/or C2 activity to endpoints associated with Outlaw, than with potential brute-forcing. As such, Darktrace could not, with high confidence correlate such SSH activity to brute-forcing. This could suggest that threat actors are now portioning or rotation of botnet devices for different operations, for example dividing between botnet expansion and mining operations.

Command line tools

In cases of Outlaw investigated by Darktrace, there was also a degree of variability involving the tools used to retrieve payloads. On the networks of customers affected by Outlaw, Darktrace DETECT identified the use of user agents and command line tools that it considered to be out of character for the network and its devices.

When retrieving the Dota malware payload or shell script data, compromised devices frequently relied on numerous versions of wget and curl user agents. Although the use of such tools as a tactic cannot be definitively linked to the crypto-mining campaign, the employment of varying and/or outdated native command line tools attests to the procedural flexibility of Outlaw campaigns, and its potential for continued evolution.

Figure 4: Breach log data showing use of curl and wget tools to connect to IP addresses associated with Outlaw.

Outlaw in 2023

Given Outlaw’s widespread notoriety and its continued activities, it is likely to remain a prominent threat to organizations and security teams across the threat landscape in 2023 and beyond.

As Darktrace has observed within its customer base from late 2022 through early 2023, activity linked with the Outlaw cryptocurrency mining campaign continues to transpire, offering security teams and research a renewed look at how it has evolved and adapted over the years. While many of its features and tactics appear to have remained consistent, Darktrace has identified numerous signs of Outlaw deviating from its previously known activities.

While relying on previously established IoCs and known tactics from previous campaigns will go some way to protecting an organization’s network from Outlaw compromises, there is a greater need than ever to go further than this. Rather than depending on a list of known-bads or traditional signatures and rules, Darktrace’s anomaly-based approach to threat detection and unparallel autonomous response capabilities mean it is uniquely positioned to DETECT and RESPOND to Outlaw activity, regardless of how it evolves in the future.

Credit to: Adam Potter, Cyber Analyst, Nahisha Nobregas, SOC Analyst, and Ryan Traill, Threat Content Lead

Relevant DETECT Model Breaches:

Compliance / Incoming SSH  

Device / New User Agent and New IP

Device / New User Agent  

Anomalous Connection / New User Agent to IP Without Hostname  

Compromise / Crypto Currency Mining Activity  

Anomalous File / Internet Facing System File Download  

Anomalous Server Activity / New User Agent from Internet Facing System  

Anomalous File / Zip or Gzip from Rare External Location  

Anomalous File / Script from Rare External Location  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint  

Compromise / Large Number of Suspicious Failed Connections  

Anomalous Server Activity / Outgoing from Server  

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Indicators of Compromise

Indicator - Type - Description

/dota3.tar.gz​

File  URI​

Outlaw  payload​

/tddwrt7s.sh​

File  URI​

Outlaw  payload​

73e5dbafa25946ed636e68d1733281e63332441d​

SHA1  Hash​

Outlaw  payload​

debian-package[.]center​

Hostname​

Outlaw  C2 endpoint​

161.35.236[.]24​

IP  address​

Outlaw  C2 endpoint​

138.68.115[.]96​

IP  address​

Outlaw C2  endpoint​

67.205.134[.]224​

IP  address​

Outlaw C2  endpoint​

138.197.212[.]204​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]59 ​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]117​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]125​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]129​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]99 ​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]234​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]236​

IP  address​

Possible  Outlaw C2 endpoint​

159.203.102[.]122​

IP  address​

Outlaw C2  endpoint​

159.203.85[.]196​

IP  address​

Outlaw C2  endpoint​

159.223.235[.]198​

IP  address​

Outlaw C2  endpoint​

MITRE ATT&CK Mapping

Tactic -Technique

Initial Access -T1190  Exploit - Public Facing Application

Command and Control - T1071 - Application - Layer Protocol

T1071.001 - Application Layer Protocol: Web Protocols

Impact - T1496 Resource Hijacking

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI