Blog
/
Network
/
July 27, 2023

Revealing Outlaw's Returning Features & New Tactics

Darktrace's investigation of the latest Outlaw crypto-mining operation, covering the resurgence of old tactics along with the emergence of new ones.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jul 2023

What is Outlaw Cryptocurrency Mining Operation?

The cybersecurity community has been aware of the threat of Outlaw cryptocurrency mining operation, and its affiliated activities since as early as 2018. Despite its prominence, Outlaw remains largely elusive to researchers and analysts due to its ability to adapt its tactics, procedures, and payloads.

Outlaw gained notoriety in 2018 as security researchers began observing the creation of affiliated botnets.[1][2]  Researchers gave Outlaw  its name based on the English translation of the “Haiduc” tool observed during their initial activity on compromised devices.[3],[4] By 2019, much of the initial Outlaw activity  focused on the targeting of Internet of Things (IoT) devices and other internet facing servers, reportedly focusing operations in China and on Chinese devices.[5],[6]  From the outset, mining operations featured as a core element of botnets created by the group.[7] This initial focus may have been a sign of caution by threat actors or a preliminary means of testing procedures and operation efficacy. Regardless, Outlaw actors inevitably expanded scope, targeting larger organizations and a wider range of internet facing devices across geographic scope.

Following a short period of inactivity, security researchers began to observe new Outlaw activity, showcasing additional capabilities such as the ability to kill existing crypto-mining processes on devices, thereby reclaiming devices already compromised by crypto-jacking. [8],[9]

Latest News on Outlaw

Although the more recently observed incidents of Outlaw did demonstrate some new tactics, many of its procedures remained the same, including its unique bundling of payloads that combine crypto-mining and botnet capabilities. [10] In conjunction, the continued use of mining-specific payloads and growth of affiliated botnets has bolstered the belief that Outlaw actors historically prioritizes financial gain, in lieu of overt political objectives.

Given the tendency for malicious actors to share tools and capabilities, true attribution of threat or threat group is extremely difficult in the wild. As such, a genuine survey of activity from the group across a customer base has not always been possible. Therefore, we will present an updated look into more recent activity associated with Outlaw detected across the Darktrace customer base.  

Darktrace vs Outlaw

Since late 2022, Darktrace has observed a rise in probable cyber incidents involving indicators of compromise (IoCs) associated with Outlaw. Given its continued prevalence and relative dearth of information, it is essential to take a renewed look at the latest campaign activity associated with threats like Outlaw to avoid making erroneous assumptions and to ensure the threat posed is correctly characterized.

While being aware of previous IoCs and tactics known to be employed in previous campaigns will go some way to protecting against future Outlaw attacks, it is paramount for organizations to arm themselves with an autonomous intelligent decision maker that can identify malicious activity, based on recognizing deviations from expected patterns of behavior, and take preventative action to effectively defend against such a versatile threat.

Darktrace’s anomaly-based approach to threat detection means it is uniquely positioned to detect novel campaign activity by recognizing subtle deviations in affected devices’ behavior that would have gone unnoticed by traditional security tools relying on rules, signatures and known IoCs.

Outlaw Attack Overview & Darktrace Coverage

From late 2022 through early 2023, Darktrace identified multiple cyber events involving IP addresses, domains, and payloads associated with Outlaw on customer networks. In this recent re-emergence of campaign activity, Darktrace identified numerous attack vectors and IoCs that had previously been associated with Outlaw, however it also observed significant deviations from previous campaigns.

Returning Features

As outlined in a previous blog, past iterations of Outlaw compromises include four identified, distinct phases:

1. Targeting of internet facing devices via SSH brute-forcing

2. Initiation of crypto-mining operations

3. Download of shell script and/or botnet malware payloads

4. Outgoing external SSH scanning to propagate the botnet

Nearly all affected devices analyzed by Darktrace were tagged as internet facing, as identified in previous campaigns, supporting the notion that Outlaw continues to focus on easily exposed devices. In addition to this, Darktrace observed three other core returning features from previous Outlaw campaigns in affected devices between late 2022 and early 2023:

1. Gzip and/or Script Download

2. Beaconing Activity (Command and Control)

3. Crypto-mining

Gzip and/or Script Download

Darktrace observed numerous devices downloading the Dota malware, a strain that is previously known to have been associated with the Outlaw botnet, as either a gzip file or a shell script from rare external hosts.

In some examples, IP addresses that provided the payload were flagged by open-source intelligence (OSINT) sources as having engaged in widespread SSH brute-forcing activities. While the timing of the payload transfer to the device was not consistent, download of gzip files featured prominently during directly observed or potentially affiliated activity. Moreover, Darktrace detected multiple devices performing HTTP requests for shell scripts (.sh) according to detected connection URIs. Darktrace DETECT was able to identify these anomalous connections due to the rarity of the endpoint, payloads, and connectivity for the devices.

Figure 1: Darktrace Cyber AI Analyst technical details summary from an incident during the analysis timeframe that highlights a breach device retrieving the anomalous shell scripts using wget.

Beaconing Activity – Command and Control (C2) Endpoint

Across all Outlaw activity identified by Darktrace, devices engaged in some form of beaconing behavior, rather than one-off connections to IPs associated with Outlaw. While the use of application protocol was not uniform, repeated connectivity to rare external IP addresses related to Outlaw occurred across many analyzed incidents. Darktrace’s Self-Learning AI understood that this beaconing activity represented devices deviating from their expected patterns of life and was able to bring it to the immediate attention of customer security teams.

Figure 2: Model breach log details showing sustained, repeated connectivity to Outlaw affiliated endpoint over port 443, indicating potential C2 activity.

Crypto-mining

In almost every incident of Outlaw identified across the fleet, Darktrace detected some form of cryptocurrency mining activity. Devices affected by Outlaw were consistently observed making anomalous connections to external endpoints associated with crypto-mining operations. Furthermore, the Minergate protocol appeared consistently across hosts; even when devices did not make direct crypto-mining commands, such hosts attempted connections to external entities that were known to support crypto-mining operations.

Figure 3: Advanced Search results showing a sudden spike in mining activity from a device observed connecting to Outlaw-affiliated IP addresses. Such crypto-mining activity was observed consistently across analyzed incidents.

Is Outlaw Using New Tactics?

While in the past, Outlaw activity was identified through a systematic kill chain, recent investigations conducted by Darktrace show significant deviations from this.

For instance, affected devices do not necessarily follow the previously outlined kill chain directly as they did previously. Instead, Darktrace observed affected devices exhibiting these phases in differing orders, repeating steps, or missing out attack phases entirely.

It is essential to study such variation in the kill chain to learn more about the threat of Outlaw and how threat actors are continuing to use it is varying ways. These discrepancies in kill chain elements are likely impacted by visibility into the networks and devices of Darktrace customers, with some relevant activity falling outside of Darktrace’s purview. This is particularly true for internet-exposed devices and hosts that repeatedly performed the same anomalous activity (such as making Minergate requests). Moreover, some devices involved in Outlaw activity may have already been compromised prior to Darktrace’s visibility into the network. As such, these conclusions must be evaluated with a degree of uncertainty.

SSH Activity

Although external SSH connectivity was apparent in some of the incidents detected by Darktrace, it was not directly related to brute-forcing activity. Affected devices did receive anomalous incoming SSH connections, however, wide ranging SSH failed connectivity following the initiation of mining operations by compromised devices was not readily apparent across analyzed compromises. Connections over port 22 were more frequently associated with beaconing and/or C2 activity to endpoints associated with Outlaw, than with potential brute-forcing. As such, Darktrace could not, with high confidence correlate such SSH activity to brute-forcing. This could suggest that threat actors are now portioning or rotation of botnet devices for different operations, for example dividing between botnet expansion and mining operations.

Command line tools

In cases of Outlaw investigated by Darktrace, there was also a degree of variability involving the tools used to retrieve payloads. On the networks of customers affected by Outlaw, Darktrace DETECT identified the use of user agents and command line tools that it considered to be out of character for the network and its devices.

When retrieving the Dota malware payload or shell script data, compromised devices frequently relied on numerous versions of wget and curl user agents. Although the use of such tools as a tactic cannot be definitively linked to the crypto-mining campaign, the employment of varying and/or outdated native command line tools attests to the procedural flexibility of Outlaw campaigns, and its potential for continued evolution.

Figure 4: Breach log data showing use of curl and wget tools to connect to IP addresses associated with Outlaw.

Outlaw in 2023

Given Outlaw’s widespread notoriety and its continued activities, it is likely to remain a prominent threat to organizations and security teams across the threat landscape in 2023 and beyond.

As Darktrace has observed within its customer base from late 2022 through early 2023, activity linked with the Outlaw cryptocurrency mining campaign continues to transpire, offering security teams and research a renewed look at how it has evolved and adapted over the years. While many of its features and tactics appear to have remained consistent, Darktrace has identified numerous signs of Outlaw deviating from its previously known activities.

While relying on previously established IoCs and known tactics from previous campaigns will go some way to protecting an organization’s network from Outlaw compromises, there is a greater need than ever to go further than this. Rather than depending on a list of known-bads or traditional signatures and rules, Darktrace’s anomaly-based approach to threat detection and unparallel autonomous response capabilities mean it is uniquely positioned to DETECT and RESPOND to Outlaw activity, regardless of how it evolves in the future.

Credit to: Adam Potter, Cyber Analyst, Nahisha Nobregas, SOC Analyst, and Ryan Traill, Threat Content Lead

Relevant DETECT Model Breaches:

Compliance / Incoming SSH  

Device / New User Agent and New IP

Device / New User Agent  

Anomalous Connection / New User Agent to IP Without Hostname  

Compromise / Crypto Currency Mining Activity  

Anomalous File / Internet Facing System File Download  

Anomalous Server Activity / New User Agent from Internet Facing System  

Anomalous File / Zip or Gzip from Rare External Location  

Anomalous File / Script from Rare External Location  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint  

Compromise / Large Number of Suspicious Failed Connections  

Anomalous Server Activity / Outgoing from Server  

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Indicators of Compromise

Indicator - Type - Description

/dota3.tar.gz​

File  URI​

Outlaw  payload​

/tddwrt7s.sh​

File  URI​

Outlaw  payload​

73e5dbafa25946ed636e68d1733281e63332441d​

SHA1  Hash​

Outlaw  payload​

debian-package[.]center​

Hostname​

Outlaw  C2 endpoint​

161.35.236[.]24​

IP  address​

Outlaw  C2 endpoint​

138.68.115[.]96​

IP  address​

Outlaw C2  endpoint​

67.205.134[.]224​

IP  address​

Outlaw C2  endpoint​

138.197.212[.]204​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]59 ​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]117​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]125​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]129​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]99 ​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]234​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]236​

IP  address​

Possible  Outlaw C2 endpoint​

159.203.102[.]122​

IP  address​

Outlaw C2  endpoint​

159.203.85[.]196​

IP  address​

Outlaw C2  endpoint​

159.223.235[.]198​

IP  address​

Outlaw C2  endpoint​

MITRE ATT&CK Mapping

Tactic -Technique

Initial Access -T1190  Exploit - Public Facing Application

Command and Control - T1071 - Application - Layer Protocol

T1071.001 - Application Layer Protocol: Web Protocols

Impact - T1496 Resource Hijacking

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

/

December 5, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor

Blog

/

Network

/

December 5, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI