How Phishing Attacks Are Becoming Harder to Identify
20
Mar 2024
Learn about the cyber risks posed by advanced phishing attacks and how AI can enhance security solutions to defend against them.
The state of email security and phishing attacks
Employees send and receive hundreds of emails a day to keep businesses moving. Unfortunately, it just takes one employee to interact with an undetected phishing email to potentially put an entire organization at risk from cyber disruption. Attackers know this, which is why they continue to develop and improve email phishing attacks.
Increased attack sophistication makes it harder than ever for traditional cyber security solutions like SEGs, firewalls, and spam filters to detect and mitigate increasingly novel and sophisticated email threats.
When there are tell-tale signs of a threat, these solutions can identify an incoming message as suspicious. Pointers such as emails from unknown senders, messages which contain an unusual amount of poor spelling and grammar or encourage the receiver to respond to an unexpected but supposedly urgent request.
That is, if the phishing attacks weren’t blocked by security measures before reaching the victim’s inbox. But, this is happening more and more often as phishing campaigns are becoming more advanced. Attackers are showing signs of consistently bypassing traditional protections and getting through to exploit victims.
Darktrace email threat reporting
In its End of Year Threat Report, Darktrace analyzed over 10 million phishing emails targeting customer environments between September 1 and December 31, 2023. Our findings signal that attackers are starting to take advantage of advancements in artificial intelligence (AI), including using Generative AI tools such as Large Language Models (LLMs) to create more convincing and sophisticated phishing messages – and at scale.
LLMs and Phishing
With the right AI prompts, attackers can use these LLMs to help write convincing email messages designed to target specific countries, companies or even individuals – all without the suspicious hallmarks which are traditionally associated with standard phishing attacks. The attackers don’t even need to speak the language of the individuals or groups they’re targeting. LLMs lower language barriers for attackers; using their native tongue, they can simply ask the Generative AI to write a message in the language of their choosing.
These techniques are designed to build trust and manipulate recipients into giving up sensitive information like user credentials, intellectual property or bank information or coerce them into downloading malicious payloads which can be used to launch further attacks on business infrastructure. With the appropriate research, attackers can tailor the messages to increase the chances of being successful, like making them look like a legitimate company email or request.
Social engineering phishing attacks
A year ago. Darktrace shared research which found a 135% increase in ‘novel social engineering attacks’ in the first two months of 2023, corresponding with the widespread adoption of ChatGPT. These novel phishing attacks showed a strong linguistic deviation compared to other phishing emails, which suggested to us that Generative AI was already providing an avenue for threat actors to craft sophisticated and targeted attacks at speed and scale
We’ve seen this trend continue. Our End of Year Threat Report found 38% of these emails were identified as utilizing novel social engineering techniques.
Attackers are also deploying another technique to make phishing emails look more convincing – they’re making the emails themselves longer and more sophisticated.
A potential victim might be suspicious of an ‘urgent’ email which prompts them to take action without an explanation - but if there’s additional context in the text, it adds an aura of legitimacy which is difficult to act against.
And threat actors know this; 28% of phishing emails analyzed by Darktrace over the period were identified as having “significant” amount of text – containing over 1,000 characters, which equates to over 200 words.
It’s a sign that attackers are innovating and bolstering their efforts to craft sophisticated phishing campaigns, potentially leveraging Generative AI tools to automate social engineering activity by creating longer, more convincing phishing emails.
QR code phishing
But this is far from the only innovative method which attackers are using to bypass traditional security defences. Among the 10 million plus emails analyzed during the reporting period, Darktrace/Email detected over 639,000 malicious QR codes within the messages.
Malicious QR codes placed within emails have become an increasingly common form of phishing attack, especially as QR codes have become a more common method for sharing links to information or buying links for products in recent years.
Attackers are deploying QR codes because they provide a way of directing unsuspecting victims to malicious websites or download links without needing to use a traditional phishing URL.
The advantage of implanting QR codes for attackers is that while phishing URLs are something which traditional security solutions are actively looking to identify and mitigate, malicious QR codes are more difficult for them to detect.
Applying AI to email security
Traditional security solutions which rely heavily on previously identified malicious emails and known bad senders are struggling to identify and defend against these novel and increasingly sophisticated email threats.
But by using AI that learns the unique digital environment and patterns of each business, Darktrace/Email can recognize the subtle deviations in expected email activity to determine whether any given email could represent a threat to the business. It is then able to make highly accurate decisions to mitigate and neutralize any email attack it faces helping to keep your organization safe from cyber disruption.
It’s therefore imperative that in the battle against ever-evolving, ever more sophisticated cyber threats, defenders are also embracing AI to keep businesses safe. By effectively applying AI to cyber security challenges, defenders can take a proactive approach to cyber security, staying one step ahead of malicious attackers, with real-time detection and automated response to known and unknown threats looking to disrupt the business via the inbox.
Darktrace/Email was recently awarded a 2024 AI Excellence Award for Machine Learning by Business Intelligence Group.
Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Bytesize Security: Insider Threats in Google Workspace
What is an insider threat?
An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.
Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.
For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.
Attack overview: Insider threat
In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.
While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.
Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.
In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.
Conclusion
Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.
Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.
Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
Darktrace Model Detections
SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File
RansomHub Ransomware: investigación de Darktrace sobre la herramienta más nueva en ShadowSyndicate's Arsenal
What is ShadowSyndicate?
ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].
What is RansomHub?
First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].
ShadowSyndicate and RansomHub
External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].
Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].
In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.
Darktrace’s coverage of ShadowSyndicate and RansomHub
Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.
Attack Overview
Internal Reconnaissance
The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.
C2 Communication and Data Exfiltration
In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.
Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.
Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.
Lateral Movement
In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.
The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.
Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.
File Encryption
Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.
Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.
In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.
Conclusion
The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.
For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.
Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)