Blog
/
Email
/
March 20, 2024

How Phishing Attacks Are Becoming Harder to Identify

Learn about the cyber risks posed by advanced phishing attacks and how AI can enhance security solutions to defend against them.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Mar 2024

The state of email security and phishing attacks

Employees send and receive hundreds of emails a day to keep businesses moving. Unfortunately, it just takes one employee to interact with an undetected phishing email to potentially put an entire organization at risk from cyber disruption. Attackers know this, which is why they continue to develop and improve email phishing attacks.  

Increased attack sophistication makes it harder than ever for traditional cyber security solutions like SEGs, firewalls, and spam filters to detect and mitigate increasingly novel and sophisticated email threats.

When there are tell-tale signs of a threat, these solutions can  identify an incoming message as suspicious. Pointers such as emails from unknown senders, messages which contain an unusual amount of poor spelling and grammar or encourage the receiver to respond to an unexpected but supposedly urgent request.

That is, if the phishing attacks weren’t blocked by security measures before reaching the victim’s inbox. But, this is happening more and more often as phishing campaigns are becoming more advanced. Attackers are showing signs of consistently bypassing traditional protections and getting through to exploit victims.  

Darktrace email threat reporting

In its End of Year Threat Report, Darktrace analyzed over 10 million phishing emails targeting customer environments between September 1 and December 31, 2023.  Our findings signal that attackers are starting to take advantage of advancements in artificial intelligence (AI), including using Generative AI tools such as Large Language Models (LLMs) to create more convincing and sophisticated phishing messages – and at scale.

LLMs and Phishing

With the right AI prompts, attackers can use these LLMs to help write convincing email messages designed to target specific countries, companies or even individuals – all without the suspicious hallmarks which are traditionally associated with standard phishing attacks. The attackers don’t even need to speak the language of the individuals or groups they’re targeting.  LLMs lower language barriers for attackers; using their native tongue, they can simply ask the Generative AI to write a message in the language of their choosing.  

These techniques are designed to build trust and manipulate recipients into giving up sensitive information like user credentials, intellectual property or bank information or coerce them into downloading malicious payloads which can be used to launch further attacks on business infrastructure.  With the appropriate research, attackers can tailor the messages to increase the chances of being successful, like making them look like a legitimate company email or request.

Social engineering phishing attacks

A year ago. Darktrace shared research which found a 135% increase in ‘novel social engineering attacks’ in the first two months of 2023, corresponding with the widespread adoption of ChatGPT. These novel phishing attacks showed a strong linguistic deviation compared to other phishing emails, which suggested to us that Generative AI was already providing an avenue for threat actors to craft sophisticated and targeted attacks at speed and scale

We’ve seen this trend continue. Our End of Year Threat Report found 38% of these emails were identified as utilizing novel social engineering techniques.

Attackers are also deploying another technique to make phishing emails look more convincing – they’re making the emails themselves longer and more sophisticated.  

A potential victim might be suspicious of an ‘urgent’ email which prompts them to take action without an explanation - but if there’s additional context in the text, it adds an aura of legitimacy which is difficult to act against.

And threat actors know this; 28% of phishing emails analyzed by Darktrace over the period were identified as having “significant” amount of text – containing over 1,000 characters, which equates to over 200 words.  

It’s a sign that attackers are innovating and bolstering their efforts to craft sophisticated phishing campaigns, potentially leveraging Generative AI tools to automate social engineering activity by creating longer, more convincing phishing emails.  

QR code phishing

But this is far from the only innovative method which attackers are using to bypass traditional security defences. Among the 10 million plus emails analyzed during the reporting period, Darktrace/Email detected over 639,000 malicious QR codes within the messages.

Malicious QR codes placed within emails have become an increasingly common form of phishing attack, especially as QR codes have become a more common method for sharing links to information or buying links for products in recent years.

Attackers are deploying QR codes because they provide a way of directing unsuspecting victims to malicious websites or download links without needing to use a traditional phishing URL.  

The advantage of implanting QR codes for attackers is that while phishing URLs are something which traditional security solutions are actively looking to identify and mitigate, malicious QR codes are more difficult for them to detect.

Applying AI to email security

Traditional security solutions which rely heavily on previously identified malicious emails and known bad senders are struggling to identify and defend against these novel and increasingly sophisticated email threats.

But by using AI that learns the unique digital environment and patterns of each business, Darktrace/Email can recognize the subtle deviations in expected email activity to determine whether any given email could represent a threat to the business. It is then able to make highly accurate decisions to mitigate and neutralize any email attack it faces helping to keep your organization safe from cyber disruption.

It’s therefore imperative that in the battle against ever-evolving, ever more sophisticated cyber threats, defenders are also embracing AI to keep businesses safe. By effectively applying AI to cyber security challenges, defenders can take a proactive approach to cyber security, staying one step ahead of malicious attackers, with real-time detection and automated response to known and unknown threats looking to disrupt the business via the inbox.  

Darktrace/Email was recently awarded a 2024 AI Excellence Award for Machine Learning by Business Intelligence Group.

Join Darktrace on 9 April for a virtual event to explore the latest innovations needed to get ahead of the rapidly evolving threat landscape. Register today to hear more about our latest innovations coming to Darktrace’s offerings.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI